
Securing Graphical User Interfaces

Dissertation
zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Dipl.-Inf. Norman Feske
geboren am 29. März 1978 in Dresden

Gutachter: Prof. Dr. rer. nat. Hermann Härtig (TU Dresden)
Prof. Dr. rer. nat. Andreas Pfitzmann (TU Dresden)
Prof. Emin Gün Sirer (Cornell University, Ithaca, NY)

Tag der Verteidigung: 5. Januar 2009

Dresden im Februar 2009

Acknowledgements

On my way towards the academic degree Doktoringenieur, I had many supporters. In the
following, I can only mention a few of them. With regard to finding my professional focus, I
am indebted to my parents, in particular to my father. With his patience and support during
my childhood, he turned my sparks of interest in engineering into the dedication that drives
me today. During the 1990s, my interests in computer science had been primarily shaped by
the Atari demo scene, which incited me to steadily advance my skills in low-level graphics
programming. The gained experiences and the relationship with the members of the Atari
community, in particular with my close friend Matthias Alles, still play an important role
in my present life. In 2002, Michael Hohmuth introduced me to the TU Dresden OS group
and motivated me to join the team. Since then, he maintained his attention to my work and
continuously supported me by the means of guidance and advice. The working environment
provided by Prof. Härtig as the head of the OS group enabled me to pursue my original
research interests. I want to specifically thank the group members Christian Helmuth and
Alexander Warg for many fruitful discussions that influenced my work, and Angela Spehr
for her moral support. Thanks to Prof. Härtig and his relationship with Intel, I had the honor
to join Intel’s platform virtualization group as an intern in 2005, which turned out to be an
invaluable experience. Working together with David J. Cowperthwaite, Sebastian Schönberg,
and Richard A. Uhlig’s research group was a huge motivation to carry on my research on
securing graphics. I gained further motivation from a very inspiring email conversation with
Jeremy Epstein who I highly regard as the pioneer in the domain of secure GUIs. The textual
quality of the final version of this thesis was greatly improved by the feedback from early
reviewers. I want to specifically thank Michael Roitzsch and Michael Hohmuth. I am deeply
grateful to Prof. Dr. Andreas Pfitzmann and Prof. Emin Gün Sirer who reviewed the final
version of this document.

Finally but most importantly, I thank my beloved wife Christin for not just tolerating but
for strongly supporting my ambitions and for maintaining the healthy balance between my
professional life and the family life with our wonderful children.

Contents

1 Introduction 1

2 Quality of Service 7
2.1 A brief history of quality of service on the GUI level 7

2.1.1 Example 1: Flicker-free and smooth mouse cursor 8
2.1.2 Example 2: Media playback at a constant frame rate 8
2.1.3 The crux of encumbering quality of service by design 9

2.2 Designing the GUI server as a resource scheduler 10
2.2.1 Making worst-case execution times of redrawing jobs predictable 10
2.2.2 Local scheduling of redrawing jobs . 11
2.2.3 Dealing with user interaction . 13

2.3 The DOpE real-time window server . 14
2.3.1 Widgets as server-side client representation 14
2.3.2 Resource scheduling . 16
2.3.3 Advanced features . 18
2.3.4 Evaluation . 18

2.4 Related Work on GUI-level Quality of Service . 22

3 Compatibility 25
3.1 User interaction with multiple virtual machines 27

3.1.1 Displaying guest windows in host windows 27
3.1.2 Input handling . 29

3.2 Feasibility analysis through experiments . 29
3.2.1 The X window system . 29
3.2.2 The Atari GEM GUI . 31

3.3 Data path from the guest GUI to the physical frame buffer 31
3.4 Related work on seamless window-system integration 34
3.5 Lessons learned . 35

4 Kernelizing the Host GUI 37
4.1 Approaching security . 37

4.1.1 Security by design . 38
4.1.2 Application-specific trusted-computing base 38

4.2 Premises for designing the host GUI server . 40
4.2.1 Preconditions . 40
4.2.2 Workloads . 41
4.2.3 Attacker model to defy . 41

i

Contents

4.3 Design . 42
4.3.1 Client-side window handling . 42
4.3.2 Buffers and views . 43
4.3.3 Input handling . 45
4.3.4 Trusted path . 46
4.3.5 Drag-and-drop . 48
4.3.6 Resource management . 50

4.4 Practical estimation of the achievable minimalism 51
4.5 Intermediate result . 53
4.6 Related work on securing GUI servers . 54

4.6.1 Protecting and isolating GUI clients . 54
4.6.2 Assuring GUI integrity . 55
4.6.3 Minimizing complexity . 56

5 Hardware-accelerated Graphics 59
5.1 Timeline of hardware-accelerated graphics . 60
5.2 Device overview . 62
5.3 Design space for multiplexing graphics hardware 63

5.3.1 API-level resource multiplexing . 63
5.3.2 Device-level resource multiplexing . 65

5.4 GPU command-stream multiplexing . 67
5.4.1 Windows Device Driver Model . 68

5.5 Hardware-supported GPU-context management 70
5.6 TCB complexity on account of hardware-accelerated graphics 71

6 Conclusion 73

ii

Chapter 1

Introduction

During the past three decades, the workload on desktop computers underwent fundamental
changes that have driven the evolution of graphical user-interface (GUI) architectures.

For the first generation of applications with GUIs, security was no concern. In a single-
tasking environment as illustrated in Figure 1.1, a GUI application included device drivers
for graphics output and user input and accessed the hardware directly. Because only one
application was executed at a time, the crash of the computer was synonymous with the
crash of the currently executed application. Thus, a bug in the application affected only the
application itself. In the worst case, the reboot of the machine compromised data of only one
single application.

This did not hold true with the rise of multi-tasking desktop environments. In such en-
vironments, multiple applications have to share the physical graphics hardware. Figure 1.2
depicts two applications that connect to a central GUI server rather than accessing the hard-
ware directly. The GUI server translates high-level GUI primitives such as windows, lines,
and text to the device level. It is the only program in the system that accesses the hardware
directly. This technique was introduced with the Blit terminal [56] and the Xerox Alto per-
sonal computer [68] and was later adapted by all predominant desktop OSes of the late 1980’s
such as Mac OS, Microsoft Windows, Digital Research’s GEM, Amiga OS, and Acorn Risc OS.
In a multi-tasking environment, a computer crash had more fatal consequences because it af-
fected each executed application. Furthermore, the likelihood for bugs to happen increased
with a growing number of concurrently executed applications. The typical way of resolving
these issues was fixing the applications, which the user regarded as trusted.

Software

HardwareDisplay
Controller

Keyboard
Controller

Application

input eventpixels,
characters

Figure 1.1: One application accesses the hardware (screen, input devices) directly.

1

CHAPTER 1. INTRODUCTION

Applications

Operating System

HardwareDisplay
Controller

Keyboard
Controller

Trusted
Application

Trusted
Application

GUI
Server

GUI primitives

Figure 1.2: Two applications executed on a multi-tasking OS use one central GUI server, which ac-
cesses the hardware on behalf of its clients.

Applications

Operating System

HardwareDisplay
Controller

Keyboard
Controller

GUI
Server

User

Trusted
Application

Trusted
Application

User

Untrusted
Application

deny

Figure 1.3: Applications executed in a multi-user environment are protected from the applications
of another user. The access to GUI sessions is protected by client authentication at the
granularity of users.

2

Applications

Operating System

HardwareDisplay
Controller

Keyboard
Controller

GUI
Server

User

Untrusted
Code

Trusted
Application

User

Untrusted
Application

Figure 1.4: In inter-networked environments, the presumption that the user’s own applications act in
his interest does not hold anymore. The user executes untrusted code and thereby puts his
sensitive applications at risk.

Operating systems evolved to support fault isolation between processes and users. UNIX
shaped the predominant security architecture with discretionary access control on a per-user
basis. With UNIX, each user is able to choose a custom set of applications he trusts and is not
put at risk by the applications executed by another user on the same machine (Figure 1.3).
Still, the role of each application in such a locally networked multi-user environment is that
of a trusted program that works on behalf of its user. The set of installed applications is rather
static and is managed by a privileged LAN administrator.

In contrast to locally networked multi-user environments of the past, most desktop com-
puters today are connected to the Internet. The set of executed applications on one machine
is no longer static but changes constantly. For example, when an operating system gets trans-
parently updated over the Internet, the user is virtually unaware of the actual implications
of the update but he has to trust an OS distribution. In addition to executing trusted code
from the user’s chosen OS distribution, the user executes untrusted code that is embedded in
the media he consumes over the Internet. Websites cause the web browser to locally execute
JavaScript code, Adobe Flash applets, or Java code. On today’s commodity desktop OSes,
each program that is directly or indirectly executed by the user can freely access the GUI,
inspect and manipulate other applications, present a Trojan Horse to the user, access global
information such as the clipboard, or render the whole GUI inaccessible.

The user is not anymore in effective control over the code that he executes because both
the underlying operating system as well as the processed active content change constantly.
Figure 1.4 shows the lack of protection of a trusted application from untrusted code executed
by the user, who is—in a real setting—completely unaware of all the code executed in his
name. The regularly changing code base combined with the overwhelming complexity of the
user’s trusted computing base renders a per-user-based discretionary access-control scheme
ineffective. On the other hand, the mentioned complexity of a modern desktop OS cannot be
avoided because of the following two reasons. First, the user expects his operating system
to support existing applications. To fulfill this requirement, the OS has to carry the legacy of
its whole lifetime and thus prevents legacies from the past to get disposed of. Consequently,
with each new OS version that adds a new feature, the complexity increases. Second, growing
functionality as expected by users imposes constant rise of code complexity. A prominent ex-

3

CHAPTER 1. INTRODUCTION

Sec
urity

Compati
bilit

y Performance

Quality of

Service

GUIGUI

Figure 1.5: The challenges of GUI-architecture design.

ample is the necessity of modern GUIs to support high-performance hardware-accelerated 3D
graphics, which is a moving target that gets more advanced with each generation of graphics
devices. This requirement implicates a huge amount of code and, as of today, makes graphics
drivers a major cause for stability problems on desktop OSes [11].

In addition to functional requirements, GUIs should meet ergonomic and nonfunctional
expectations such as a bounded and low latency of screen updates, guaranteed responsive-
ness to user actions, a constant frame rate for playing media, and the prevention of overload
situations. I subsume these nonfunctional requirements under the label quality of service. As
a matter of fact, current commodity GUIs provide their services in a best-effort fashion but
fail to effectively address quality of service.

Figure 1.5 summarizes the four competing challenges that GUI architectures have to face.
Security implies the requirement of low complexity. Performance translates to efficient use
of hardware-accelerated graphics devices. As illustrated, the goals are in conflict and thus,
existing GUIs do only achieve subsets of these goals. The following examples highlight the
crux of these conflicts by referring to the X window system as a representative of today’s
commodity GUIs. Similar issues can be reported about other commodity GUIs such as the
Windows GUI.

Compatibility and security

When the X window system was designed in 1984 [64], the importance of security was sub-
ordinate to interoperability between applications. The design of the X clipboard protocol, the
use of global window IDs, or the way of input-event handling was motivated to facilitate
inter-application communication. Today the large base of existing applications relies on these
protocols. Adapting the design to the present security requirements would break application
compatibility. For this reason, today’s commodity Linux distributions ship an X server that
permits each application to observe user actions, to control other applications, to take screen
shots of the whole desktop, to globally grab the mouse cursor, to make the GUI inaccessible
by opening a full-screen window, and to change the keyboard layout.

Compatibility and quality of service

A similar legacy is the redraw-processing protocol of X window system, which relies on mu-
tual collaboration of the GUI server and its clients. The GUI server has no information about

4

the number of graphics operations performed by a client on a window-redraw request. The
redraw-processing time depends on the client and thus, the GUI server is inherently unable
to provide any means of quality of service if one misbehaving client is present in the GUI
session.

Performance and security

When the race between different hardware-accelerated graphics devices started, raw graphics
performance became the ultimate selling point of these devices. Therefore, high performance
served as the primary criterion of the graphics-driver infrastructure. Maximum performance
and flexibility can be achieved by enabling 3D-graphics applications to directly access the
graphics-processing unit (GPU) of the physical device. Consequently, this design was imple-
mented into the Linux kernel and is known as DRI (Direct Rendering Infrastructure). The
downside of this approach is that each 3D-graphics application acts indeed as a graphics
driver that must cooperate with all other graphics applications. A faulty or malicious graph-
ics driver, however, is able to put system reliability and security at a high risk. In effect, the
security and reliability of a DRI-supporting Linux system is at the mercy of each DRI appli-
cation.

The scope of my work

The aim of my work was to resolve the conflicts between the four stated goals. On the course
of my work, I developed key techniques and substantiated the concepts by a number of ex-
haustive experiments. To each goal, I dedicate a chapter that presents the rationale behind
my propositions for designing the GUI-server, refers to related work, sketches my actual en-
gineering work, and reports on my experimental results.

In Chapter 2, I describe how to turn the GUI server into a strictly periodic process and
thereby guarantee the quality of service for the GUI. Chapter 3 presents a technique for merg-
ing multiple window systems into one integrated desktop to enable the coexistence of legacy
GUIs alongside modern and secure GUIs. Secure client-side window management, which I
describe in Chapter 4, clears the way for reducing the GUI’s complexity and, at the same time,
provides essential security functions. Chapter 5 explains how my proposed design benefits
from recent technical advances of graphics devices to make hardware-accelerated graphics
fully exploitable without sacrificing the achieved security properties. When combined, the
presented techniques enable the construction of a GUI architecture that achieves the four
competing goals.

Of course, the outcome of my work is not a ready-to-use real-life solution for the pressing
security problems with GUIs. With the complexity and diversity of graphics hardware alone,
such a mission is beyond the power of one individual. The developed techniques and their
composition, however, may hopefully serve and inspire developers of current and future
commodity GUIs to address the four competing goals of GUI architectures more effectively
than today.

Primary contributions

With the development of the DOpE GUI server described in Chapter 2, I initially focused my
work on quality of service. DOpE is the first GUI server modelled as a periodic real-time
process. By following this approach, I developed techniques to fit different GUI workloads
into the periodic execution model. Thereby, I made optimization techniques such as lazy

5

CHAPTER 1. INTRODUCTION

updating of GUI client representations and redraw dropping applicable to the domain of
windowed GUIs. The resulting design does not only accommodate QoS-sensitive GUI clients
alongside non-real-time workload but it prevents overload situations by design.

By increasingly moving my research focus to security, I identified the combination of virtual
machines with seamless window-system integration as the enabler for reconstructing a GUI
server that is free from legacies but maintains compatibility to existing applications. I con-
ducted various experiments to explore the practical application of seamless window-system
integration and the involved engineering costs.

The experimental results stimulated the main contribution of this thesis, which is the fresh
redesign of the GUI server for drastically improving security over the state of the art while
maintaining the availability of existing GUI applications.

My focus on software-based rendering raised the question of how to combine the achieved
solution with hardware-accelerated graphics. Therefore, I explored various graphics devices
with regard to their applicability for secure GUIs and realized how recent feature additions
to graphics devices help to handle this issue.

Auxiliary contributions

The main body of this document addresses GUI architecture but a secure GUI alone does not
resolve the security issues of today’s commodity desktop OSes because these OSes do not
provide strong security mechanisms for isolating applications and for countering denial-of-
service attacks. The even more problematic observation is the steady growth of OSes in terms
of complexity, which increasingly exposes the depending applications to a growing number
of bugs and attack vectors for zero-day exploits.

As a side project of my GUI-related work, I developed a vision of how a secure OS foun-
dation that is able to support general-purpose desktop-OS workload may look like. In joint
work with my colleague Christian Helmuth, I turned this vision into an OS design and im-
plemented a working prototype [31]. With our implementation of the base components and
protocols, we created the foundation of a secure OS at a source-code complexity of less than
20,000 lines of code.

In addition to the practical work described in this document, I conducted a number of
further experiments that are loosely related to the goals of my thesis. Several of these experi-
ments turned out to be of value beyond the scope of my personal work. My GUI implementa-
tions are employed by several industrial and academic research groups, for example at Intel,
ST microelectronics, EADS, and they are valued as major components of the DROPS/Nizza
research OS developed at the University of Technology Dresden. Even though originally de-
signed for the DROPS real-time operating system, I have ported the DOpE GUI server to
several other platforms such as Linux, a Coldfire-based embedded platform, and a custom
hardware based on Xilinx’ Microblaze soft core. Thereby, DOpE is the first full-featured win-
dowed GUI running on a Spartan3 FPGA system-on-chip platform1. The outcome of my
work enabled or contributed to more than a dozen student research projects and it is part of
ongoing research activities.

1In addition to the Microblaze soft core, the Spartan3 FPGA hosts custom controllers for memory, display, mouse,
and keyboard.

6

Chapter 2

Quality of Service

Sec
urity

Compati
bilit

y
Performance

Quality of

Service

GUIGUI

Apart from providing the functionality of multiplexing input and output devices to multi-
ple GUI clients, a GUI server is expected to meet ergonomic and nonfunctional requirements
such as a bounded and low latency of screen updates, guaranteed responsiveness to user ac-
tions, a constant frame rate for playing media, and the prevention of overload situations in-
duced by faulty applications. Today’s commodity GUIs provide their services in a best-effort
fashion but fail to effectively address these expectations. Furthermore, with the workload
of untrusted and potentially malicious programs being executed alongside sensitive applica-
tions on inter-networked computers, the lack of quality-of-service in the GUI-server design
can become a reliability risk. This chapter presents a systematic approach to the design of a
quality-of-service-aware GUI server and explains the employed key techniques.

Section 2.1 recalls past experiences with quality of service on the GUI level to substantiate
the requirements to be addressed by the design presented in Section 2.2. Section 2.3 elaborates
on the extensive practical experiments made with my custom GUI server implementation.
Section 2.4 conclude the chapter with pointers to related work.

2.1 A brief history of quality of service on the GUI level

The following two examples are a flashback on how GUIs approached quality of service in
the past. Although the examples seem rather mundane, the consequences of the taken ap-
proaches are still present in the current versions of GUI servers.

7

CHAPTER 2. QUALITY OF SERVICE

2.1.1 Example 1: Flicker-free and smooth mouse cursor

The life story of the mouse cursor over more than two decades is insightful for understanding
the difficulty of achieving quality of service at the GUI level. The main challenge here is
that the user expects the mouse cursor to move smoothly with a latency of no more than 20
milliseconds or less whereas the GUI server has to streamline mouse-cursor updates into the
processing of potentially long-taking redraw operations. In early GUI servers, two techniques
had been used to decouple the cursor-drawing logic from GUI redrawing:

On the Amiga home-computer series, the mouse cursor was realized by using a hardware
sprite featured by the Amiga chip set. This hardware feature relieved the Amiga OS from
resolving the concurrent screen access for handling the mouse cursor and the actual GUI.

Most of the other desktop OSes had to live without hardware sprites and the drawing of the
mouse cursor had to be synchronized with redraw activity of the GUI server. Before drawing
the cursor, the GUI server saved the cursor’s background into a buffer. To move the cursor
to a new position, the GUI server restored the saved background at the old position first,
subsequently saved the background at the new position, and drew the cursor there. Dur-
ing the times when the GUI performed redraw operations on screen, the mouse cursor was
temporarily being switched off by just restoring its background. Consequently, during long-
taking drawing operations, the mouse cursor flickered and started to move in a non-smooth
fashion. This method was used by the GUI of Windows version 3 and early versions of the
X window system. The Atari TOS and Mac OS provided a certain degree of quality of ser-
vice by sampling mouse-input events at a much higher rate than the vertical sync frequency
of the screen and by calling the mouse-cursor update routine directly from the dispatcher of
the vertical blank interrupt, which is an interrupt triggered by the vertical blank of the dis-
play. Thus, the mouse cursor was typically updated during screen blanks and was moving
at a smooth rate of circa 70 updates per second. Still, the mouse cursor flickered during long
drawing operations.

For commodity desktop OSes, the problem of flickering and jerky mouse cursors was never
solved in software. In fact, this problem was regarded as critical enough to impose hardware
changes by introducing the mouse cursor as a feature into graphics cards. Thereby, the hard-
ware sprite as originally provided by the Amiga chip set was reintroduced and still resides
as a standard feature in modern graphics cards.

2.1.2 Example 2: Media playback at a constant frame rate

With the rise of multi-media applications in the 1990’s, smooth media playback at a constant
frame rate became an important feature of desktop OSes.

The state of the art was a GUI server that provides the sequential execution of graphical
primitives and served its GUI clients in a best-effort fashion. As the temporal profile of the
graphical primitives varies, time-intensive graphical primitives can significantly delay subse-
quent operations. GUI clients compete against each other for processing graphical primitives
at the GUI server. Consequently, the performance and latency of the graphical output of each
GUI client depends on the graphical primitives as issued by all other GUI clients. Although
this best-effort technique is feasible for non-media applications, a media application requires
the update of its window at fixed intervals. For such an application, unbounded redrawing
delays and unpredictable graphical throughput caused by concurrent applications are not
acceptable.

Analogous to the mouse-cursor problem, a fundamental architectural change of the GUI
server seemed to be less feasible than changing the hardware. Thus, hardware vendors en-

8

2.1. A BRIEF HISTORY OF QUALITY OF SERVICE ON THE GUI LEVEL

#include <X11/Xlib.h>

int main(int argc, char **argv)
{
 Display *dpy;
 Window root, win;
 int screen;
 int x = 0, y = 0;

 /* create window */
 dpy = XOpenDisplay(NULL);
 screen = DefaultScreen(dpy);
 root = RootWindow(dpy, screen);
 win = XCreateWindow(dpy, root,
 -200, -200, /* position */
 1000, 1000, /* size */
 0, /* border */
 CopyFromParent, /* depth */
 InputOutput, /* class */
 CopyFromParent, /* visual */
 0, 0);

 /* issue jobs to the X server by constantly changing the window position */
 while (1) {
 XWindowChanges wincfg;

 wincfg.x = x;
 wincfg.y = y;
 XConfigureWindow(dpy, win, CWX | CWY , &wincfg);
 XMapWindow(dpy, win);
 x = (x + 10) % 1000;
 y = (y + 10) % 800;
 }
}

Figure 2.1: Denial-of-service attack targeted at the X server. After creating a single window, the pro-
gram stresses the X server by constantly adjusting the window position in a spinning loop.
Once started, it renders the whole X session inaccessible and leaves the user no other choice
than killing the X server. This attack works on the version 7.2 of X.org [33] that comes with
major Linux distributions such as Ubuntu 7.04 released in April 2007.

hanced graphics cards by supporting color-keyed overlays, which enabled the display of me-
dia data that bypasses the window system.

Today the media-playback problem is relieved by the capacities of hardware-accelerated
graphics. But even on Mac OS X featuring Quartz as one of the technically most advanced
GUIs of today, uniform performance degradation occurs in the presence of several active
windows in the GUI session.

2.1.3 The crux of encumbering quality of service by design

Both examples illustrate how GUI developers struggled to achieve quality of service, yet
were not able to provide an adequate software solution given the existing GUI architectures
at the time. It seemed easier to introduce hardware workarounds for these specific problems
rather than providing quality of service through software. Another lesson to be learned from
these examples is that the hardware workarounds by themselves introduced a number of new
problems. For example, the number of overlays supported by the hardware imposed a new
limit on the number of media-displaying windows on screen. Furthermore, each hardware
vendor implemented the features differently such that GUI servers now have to support a
range of different implementations. With each hardware workaround, the device drivers
grew more complex and less manageable.

Although the given examples may seem to address blemishes, quality-of-service require-
ments extend to availability as a vital security property. For ensuring the responsiveness
of the GUI server and for protecting its overall availability, the GUI server must be able to

9

CHAPTER 2. QUALITY OF SERVICE

deal gracefully with overload (denial of service) situations that may be induced by faulty or
malicious GUI clients. Figure 2.1 presents an attack targeted at the availability of a current-
generation X server. Unlike the previous examples, this problem is not solvable by a hardware
workaround. Thus, I took a step back from the existing GUI implementations and created a
GUI design that addresses quality-of-service concerns from the beginning. To recapture the
actual requirements regarding quality of service, the GUI server has to serve

The user who expects immediate feedback on his input. This includes a smoothly moving
mouse cursor but also mouse-focus indication when the mouse cursor is moved over a
button and immediate feedback when a button is pressed or when a window is moved.
Empirically, an appropriate latency for visual feedback is 20 milliseconds.

Real-time media applications that require periodic updates at predefined intervals. There-
fore, the load on the GUI-server induced by such applications is predictable. Typical
update intervals are in the range of 20 to 40 milliseconds.

Non-real-time applications that may cause any amount of drawing activity at any time.
Their behaviour is not predictable but delaying their graphical output in overload situ-
ations is acceptable.

As best illustrated by the described examples, a best-effort strategy as applied by existing
commodity GUIs cannot guarantee the temporal requirements by the user and real-time me-
dia applications. The only way to meet these requirements is to enable the GUI server to
cautiously manage physical resources such as processing time and bus bandwidth according
to temporal constraints. Therefore, we need to model the GUI server as a real-time process
that schedules and executes redrawing jobs.

2.2 Designing the GUI server as a resource scheduler

To successfully plan ahead of time, a scheduler relies on the knowledge of scheduling param-
eters, in particular the execution time of each job, in advance of execution.

The classical approach for performing redrawing jobs, however, relies on a tight interplay
of the GUI server with its GUI clients. To update a screen portion, the GUI server deter-
mines the set of GUI clients that are visible at the screen region and instructs each GUI client
to redraw its visible portion. In turn, each GUI client responds to the request by invoking
a sequence of graphical primitives composing the client’s pixel representation at the GUI
server. The set of graphical primitives as supported by the GUI server comprises for example
the drawing of lines, the output of text strings, and the filling of polygonal shapes. Con-
sequently, the time needed to update a screen portion depends on the number and type of
graphical primitives as selected by each GUI client to produce its pixel representation. Hence,
the GUI server cannot reason about the time needed to execute the involved graphical prim-
itives ahead of execution. From the GUI server’s point of view, the execution time of each
redraw job is unbounded. Major commodity GUIs such as the Windows XP GUI, Mac OS
(until version 9), and the X window system employ such a protocol.

2.2.1 Making worst-case execution times of redrawing jobs predictable

A method to dissolve the dependency of the GUI server from its clients during screen updates
is to move each GUI client’s graphical representation into the GUI server and thereby en-
able the GUI server to autonomously reproduce pixels out of the client representation locally
stored at the server. This representation can be based on raw pixel data or on a higher-level

10

2.2. DESIGNING THE GUI SERVER AS A RESOURCE SCHEDULER

abstraction such as a widget set including buttons, menus, and other basic GUI elements.
Performing the transformation of each client’s representation to pixels locally enables the
GUI server to predict all graphical primitives that are needed for any screen update and, as a
consequence, to estimate overall execution times of redrawing jobs in advance of execution.

The sequence of graphical primitives is a function of both the known transformation of the
GUI client’s representations to pixels and the actual window layout. The latter, however, may
have a significant influence on the required graphical primitives but is not known at admis-
sion time of a GUI client. This problem is best illustrated by the painter’s algorithm as used
by the Windows Vista’s Desktop Window Manager (DWM), the Quartz window manager of
Mac OS X, and the composite extension of the X window system.

Deficiency of the painter’s algorithm As a painter, the algorithm produces the final image
by painting all objects ordered by their distance from the viewer, starting with the rearmost
(background) and finishing with the foremost (top window). In the final image, window
portions that are covered by other windows get correctly over-painted and are no longer vis-
ible. Combined with the use of alpha channels, which is comparable with applying layers
of watercolor with different translucencies to a canvas, this algorithm provides maximum
flexibility with regard to the shapes of windows and their opacity. With regard to predicting
redraw-execution times however, this algorithm is not well suited. Even though the sequence
of graphical primitives used by the Painter’s Algorithm can be determined immediately prior
execution, we cannot predict a realistic redraw execution time for a specific GUI client at its
admission time because the actual costs depend on the other GUI clients and on the window
layout, which is not fixed during the lifetime of the GUI client. Therefore, the admission
of new GUI clients is based on an overly pessimistic worst-case redraw-execution time as-
suming that all windows are covering each other and thus, must be painted for each redraw
operation.

Decoupling redraw-execution times of different clients To dissolve the inter-dependency
of windows from each other during the redraw of one particular window (target window),
the painting algorithm should limit its operation to only the target window but should not
paint the windows of any other windows. This can be achieved by preceding the painting
operation by a geometric analysis that computes the target window’s visible portion. The
visible portion is determined by successively cutting out the shape of each window in front
of the target window from the target window’s shape. Such a technique was originally em-
ployed by most window systems but current-generation commodity GUIs discarded this
approach in favour of executing the painters algorithm via hardware-accelerated graphics.

Figure 2.2 illustrates this procedure. The resulting shape is then used as clipping boundary
while painting the target window to mask out all pixels that are covered by other windows.
The worst-case redraw-execution time for each window corresponds to painting the window
when fully exposed and it is invariant toward the presence of other windows and the window
layout (ignoring the computational overhead for the geometric analysis at this point). With
known temporal characteristics of the single graphical primitives, this technique enables us
to predict redraw-execution times prior execution and, therefore, base the admission of GUI
clients on realistic worst-case execution times.

2.2.2 Local scheduling of redrawing jobs

With the satisfied precondition of known worst-case redraw-execution times, the construction
of the GUI server as a periodic process clears the way for deploying the full variety of well-

11

CHAPTER 2. QUALITY OF SERVICE

Target window Target window Target window

Target window Target window

Figure 2.2: Determining the visible portion of a window by successively clipping the window’s shape
against each overlapping window.

understood admission and scheduling strategies for such processes. In addition, the redraw-
job scheduler can take the different characteristics of planned and spontaneous redrawing
jobs into account. Once admitted for a defined window size and a fixed update interval, a
planned job as used by real-time media applications corresponds to a classical real-time job
with its deadline being implied by the update interval. A valid schedule for a set of planned
jobs can be obtained by using a standard algorithm such as Earliest Deadline First (EDF). In
contrast, spontaneous jobs can be induced at arbitrary times by any GUI client posting an
update of its GUI representation or by user interaction. The occurrence of spontaneous jobs
is not predictable. Once triggered, such a job does not have a deadline assigned but it should
be processed as soon as possible (best effort) without affecting planned jobs. A classical best-
effort GUI server handles spontaneous jobs only and executes each job when it arrives at
a blocking synchronous client interface shared among all GUI clients. In contrast, a real-
time GUI server receives spontaneous jobs via an asynchronous client interface, enqueues the
incoming redraw-job requests into a redraw queue, and processes redraw-queue elements
when the planned schedule permits execution. Because all GUI-client representations are
locally known to the GUI server, each redraw-queue element contains only the information
about the corresponding window and the window portion to be redrawn but does not include
graphical primitives.

Constraining priority inversion through artificial preemption points Executing (low-
priority) spontaneous jobs during the time left in the schedule of (high-priority) planned
jobs, however, raises a priory-inversion problem because once started, a long-taking sponta-
neous job must first be completed before the next planned job can be executed. This delay
introduces jitter and may corrupt the schedule of planned jobs. Thanks to the locally known
GUI-client representations as described in Section 2.2.1, we can estimate the execution time
for each spontaneous job before starting its execution. If the spare time slot in the schedule
is not sufficient to execute the spontaneous job completely, the job can be subdivided into
smaller jobs addressing distinct screen portions of the original job in a way that each sub
job’s execution time fits nicely into a spare time slot in the schedule.

12

2.2. DESIGNING THE GUI SERVER AS A RESOURCE SCHEDULER

Managing overload situations Due to the unpredictability of spontaneous jobs that can
be issued by any GUI client at any time, the GUI server can be confronted with overload
situations. For example, a terminal application may generate a large number of spontaneous
jobs when scrolling through large text output. If the GUI server is not able to process graphics
operations fast enough, subsequent jobs will stack up at the redraw queue of the GUI server
and render the GUI inaccessible until all pending redraw operations are executed. Because
this delay is unbounded and depends on the behaviour of the GUI clients, a malicious GUI
client would be able to impose the denial of service of the GUI server.

Redraw queueing The key for tackling an unbounded population of the redraw queue
lies in the characteristics of redrawing jobs. If there exist multiple jobs in the redraw queue
that refer to the same screen region, only the computational result of the most recent job is
important whereas the intermediate states as produced by the other jobs get successively
repainted. Consequently, such intermediate jobs can be discarded. Video players employ a
similar approach for dealing with situations for which the available processing time is not
sufficient for decoding all frames of a video stream. In such situations, intermediate frames
get dropped to yield the remaining processing time to the most current frame. This technique
provides quality of service by trading the smoothness of the video playback for the timeliness
of the presented information and thereby prevents unbounded overload situations.

In contrast to a video player that performs frame dropping at the spatial granularity of
the whole video frame, a window system composes the screen of a number of potentially
overlapping windows, for which redraw dropping can be applied individually. For each in-
coming redraw job, the GUI server searches for a pending job in the redraw queue that refers
to the same window. If such a pending job exists in the queue, this job gets replaced by
the compound of the existing job and the incoming job. If both jobs refer to distinct regions
of the window, the resulting job will refer to the bounding box of the original job and the
incoming job. This way, a once enqueued job for a particular window can successively be
enlarged by incoming jobs while staying in the redraw queue. The maximum extent of the
enqueued job, however, is limited by the size of its corresponding window. Consequently, the
redraw queue’s size is bounded by the number of windows present on the screen, which pre-
vents the queue from overrunning. Furthermore, all redraw-queue elements refer to different
windows and thus to distinct screen regions. Thanks to successive clipping as described in
Section 2.2.1, the actual execution time of each job correlates to the visible portion of its win-
dow. The sum of the execution times of all enqueued jobs is bounded by the number of pixels
on screen. Therefore, this algorithm enables the GUI server to inherently avoid overload sit-
uations and to guarantee a bounded worst-case latency for any graphical output on screen.
This worst-case latency is the time needed to perform the redraw of the whole screen.

The combination of redraw splitting with redraw dropping enables the GUI server to
streamline redraw operations and input handling into one periodic process. It provides
response-time guarantees for user input including visual focus feedback and processes the
redraw of all GUI clients. The scheduling of redraw jobs is local to the GUI server and
thereby enables the use of a wide range of scheduling strategies, for example by considering
multi-threaded versus single-threaded operation.

2.2.3 Dealing with user interaction

The previous section presented how the characteristics of redraw jobs enable the scheduler to
apply a specially tailored scheduling strategy leading to the prevention of overload situations
by design. A similar technique can be applied to handling user input.

13

CHAPTER 2. QUALITY OF SERVICE

Pointer devices such as mouses or tablets sample user input at high rates (e. g., 16K bits per
second for PS/2) and generate a flood of motion events during mouse or stylus movements.
Each motion event is a spontaneous job that requires event handling in the GUI server. This
includes translating device-specific coordinates to screen coordinates, moving the mouse cur-
sor, determining the GUI element under the mouse cursor by traversing meta data, visually
changing the GUI element on changed mouse-focus, and the routing of the event to the re-
ferred GUI client. Due to the cost of these operations, a steady supply of user input events at
such a high rate can induce a high load to the GUI server and its clients. The user, however, is
only able to perceive the resulting visual changes at a rate lower than 100 Hz. Consequently,
for each perceived GUI state, the GUI server may have undergone intermediate states that
are ignored by the user1 but produce system load.

By turning event handling into a periodic mode of operation, the overhead for handling
high-rate user input can be significantly reduced. Analogous to the redraw handling, the first
step is the decoupling of job submission (an input device interrupt occurs) and execution (the
GUI interprets the event) by introducing a first-in-first-out queue. Each time, an input event
is generated by the input device, the interrupt handler enqueues the event into a device-event
queue. Therefore, the insertion of device events happens aperiodic but at a known maximum
rate, which dictates the required queue size.

At a low rate of 100 Hz, the periodic event-processing thread of the GUI server interprets
the batch of device events currently stored in the queue. Due to the characteristics of motion
events, the batch contains large sequences of motion-only events that can be merged to only
one event by accumulating the motion vectors of successive motion events. Consequently,
the resulting number of input events to be executed by the GUI server is bounded by the rate
on which the user can supply non-motion events such as button press or release events. Typi-
cally, this rate is not higher than 100 Hz such that for each period, the GUI server must handle
only a few (empirically ca. 0 to 3) input events that imply only negligible computational costs.

2.3 The DOpE real-time window server

The rationale as described in Section 2.2 is the result of extensive practical experiments using
the DOpE real-time window server [28, 29] and the TU Dresden’s custom OS called DROPS
[37] as a testbed. This section describes the most interesting properties of DOpE and reports
on the practical experiences made.

2.3.1 Widgets as server-side client representation

Section 2.2.1 highlighted the need for server-side client representations to enable the GUI
server to process redrawing jobs independent from its clients and thereby make the job exe-
cution times predictable. The design space for a server-side client representation ranges from
pixel-based representations to high-level descriptions of the GUI elements (widgets).

By using a pixel-based representation shared between the GUI client and GUI server, the
redraw functions in the GUI server are simple pixel copy operations whereas the GUI client
can freely express its visual appearance. This approach is used for example by the Mac OS X
Quartz engine and the EROS Window System [67]. The great flexibility for GUI clients and
the simplicity of the GUI server, however, comes at the cost of a high memory usage. Each

1 The high temporal resolution of input events as supplied by pointer devices is required by only a few applica-
tions such as paint programs to accurately digitize brush strokes. For such applications, the GUI server should
provide the raw stream of input-device events via a dedicated interface.

14

2.3. THE DOPE REAL-TIME WINDOW SERVER

window requires an equally sized pixel buffer to store the representation, even when the win-
dow is fully covered by other windows. Furthermore, this approach requires a tight interplay
between the GUI server and its clients for providing visual feedback to user interactions. For
example, to highlight the GUI element under the mouse cursor, the GUI server has to pro-
vide mouse motion events to the GUI client, which, in turn, determines the GUI element at
the mouse position, updates the corresponding part of the pixel buffer, and then notifies the
GUI server to refresh the changed pixels on screen.

In contrast, when the GUI server implements the widget set, functionality such as mouse-
over focus and window resizing can be handled locally in the GUI server without involving
the GUI client. With regard to memory-resource usage, a server-side widget set is signifi-
cantly more efficient because a typical semantic description of a widget consumes only a few
bytes regardless of the actual size on screen. For example, for representing a button wid-
get, the GUI server needs to store only its position, size, state, and the button text, which
consumes significantly less memory than the corresponding pixel-based representation. The
GUI server produces the pixel-based representation from the internal semantic representation
only if the widget is visible on screen and therefore provides a large potential for performance
optimizations based on window layout. For example, if a client updates the text of a button,
it pushes the new button property to the GUI server, which stores it locally. The transforma-
tion to pixels, however, is only performed if the button is not completely covered by other
windows. If partly covered, the transformation costs are proportionally related to the visible
portion. Further arguments in favour of a server-side widget implementation are fostered
consistency and interoperability between GUI clients because the GUI server facilitates one
common look and feel for all GUI clients. However, as proven by the GNOME and KDE
projects, such properties can be provided by client-side libraries as well.

With DOpE, I explored the design range by providing a fully functional server-side widget
set that also facilitates the use of pixel-based client representations by the means of a special
widget type. The widget set consists of layout widgets, which organize a number of child
widgets according to geometric rules, and leaf widgets, which represent the actual state of
the GUI client. Therefore, the representation of each GUI client is a tree of widgets. DOpE
provides the following layout widget types:

Window A window consists of standard window controls such as a title bar and resize ele-
ments and manages exactly one child widget as its content.

Grid A grid arranges its child widgets in rows and columns. It can determine the size of
the rows and columns based on the geometric constraints of its child widgets but also
allows for client-defined weighted or fixed sizes.

Container A container enables the GUI client to freely position child widgets via pixel co-
ordinates. It is normally not used by GUI clients but by DOpE internally for arranging
window-control elements.

Frame A frame holds one arbitrarily-sized content widget, which can be larger than the
frame’s dimensions. In this case, the frame provides scrollbars to let the user freely
choose the view port on the content widget.

For expressing actual client state, DOpE provides labels, buttons, text entry fields, load dis-
plays, numeric scales, and scrollbars as leaf widgets.

DOpE’s widget set is designed to enable GUI clients to realize more complex GUI elements
by composing these basic widget types. For example, a tree widget can be realized by combin-
ing nested grids with leaf widgets. In addition to the already mentioned leaf widgets, DOpE

15

CHAPTER 2. QUALITY OF SERVICE

DOpE GUI Server

Main Thread

GUI Clients

Interface Thread

client
request

redraw queue

flush pixels

rendering engine

Physical
Frame BufferInput Device

Double
Buffer

CO
PY

input handling

widgets

merge split

draw

apply
policy

Graphics Device

Figure 2.3: Structure of the DOpE GUI server.

provides a widget type called vscreen that enables GUI clients to use pixel-based represen-
tations shared with DOpE. Each vscreen widget has an associated pixel buffer. The normal
mode of operation is that a GUI client writes pixels to the vscreen buffer and then notifies
DOpE to update the changed part of the buffer on screen. Additionally, vscreens can be used
for continually updating the vscreen buffer at fixed intervals. In this strictly periodic mode
of operation, DOpE statically reserves the bus bandwidth required for performing the screen
updates and thus guarantees a fixed update rate. The GUI client can synchronize itself to the
periodic vscreen updates by collaborating with a synchronization thread in the GUI server
created independently for each periodic vscreen widget.

2.3.2 Resource scheduling

Figure 2.3 illustrates the structure of the DOpE GUI server. For its basic operation, DOpE
uses two threads of control flow. The interface thread serves the client interface for all DOpE
clients to enable the creation and management of widgets. The functions of DOpE’s client in-
terface perform simple operations on the widget representation and enqueue redraw requests
accordingly. Because all functions return immediately and never block, multiple GUI clients
can use one and the same communication interface with little interference of each other.

16

2.3. THE DOPE REAL-TIME WINDOW SERVER

In contrast to the interface thread, the main thread is executed strictly periodic. In each
period, this thread handles user-input and processes redraw operations. Because DOpE em-
ploys the user input handling as described in Section 2.2.3, user-input handling causes only
negligible resource usage. The redraw processing, however, is the primary consumer of both
processing time and bus bandwidth and therefore, is subject to local scheduling within DOpE.

Each redraw request undergoes three stages that correspond to different abstraction levels.
First, a redraw request is triggered by a client request (e. g., a client places a button into
a window) or by user input (e. g., the user moves a window). This request refers to the
targeted window and gets enqueued into the redraw queue by applying the redraw-merging
technique described in Section 2.2.2. If multiple redraw requests targeting the same window
are issued at a high rate, these requests get merged and reside as one request in the redraw
queue. Note that redraw requests can get issued asynchronously from the interface thread at
any time. At the second stage, the periodic main thread transforms the window referenced
by the redraw request to pixels. Enabled by the knowledge of the local representation of the
widget tree for any window on screen, DOpE is able to generate the sequence of graphical
primitives required to create the pixel-based representation. These graphical primitives are
essentially the drawing of scaled images, the drawing of vertical or horizontal lines, and
the output of text. DOpE provides these graphical primitives via software rendering that
operates on a pixel back buffer in main memory. Its widget rendering engine is designed such
that most pixels get touched only once during one transformation. However, there are cases
for which one pixel gets subsequently written multiple times. For example, when drawing
text on a button, the background of the button is drawn first and then partially overwritten by
the textual label. Furthermore, translucent graphical primitives (with alpha blending) require
read operations from the pixel buffer to combine the painting color with the background
color. During the third stage, the result of the transformation gets transferred from the pixel
buffer over the I/O bus to the frame buffer of the graphics card and thereby becomes visible
on screen.

This three-stage technique is motivated by the following reasoning. Bus transfers are an
order of magnitude slower than memory accesses. By transferring only the final result of the
transformation over the bus, each pixel is transferred only once, minimizing the bus load. On
commodity graphics cards, read operations from the frame buffer are slow. By performing the
second stage in host memory, such costly read operations are completely avoided. Thanks to
the clipping and optimization techniques of DOpE’s widget-rendering engine, the bus trans-
fer of the pixels clearly dominates the overall rendering performance. Consequently, a good
approximation for the temporal costs of each redraw request can be derived from the amount
of pixel data that must be transferred over the I/O bus. Because this amount correlates with
the size of the redraw request, a feasible temporal model for any redraw operation is:

processing time =
redraw request size

bus bandwidth
(2.1)

DOpE uses this simple model as the basis for redraw scheduling, which essentially corre-
sponds to I/O bus scheduling. DOpE determines the bus bandwidth via run-time monitoring
of its graphics performance and calibrates its temporal model dynamically using a sliding-
means algorithm. This way, DOpE is able to dynamically adapt its redraw scheduling to
changing bus loads. A further consequence of the approach is the inherent double buffer-
ing of graphical output that completely avoids displaying inconsistent GUI states that occur
during the transformation of the widget representation to pixels. Because DOpE performs
the handling of the mouse cursor in the second stage, the visible mouse cursor moves always
smoothly at the fixed rate of the main thread and is free from flickering artifacts. No hardware
mouse cursor is needed.

17

CHAPTER 2. QUALITY OF SERVICE

Beside those overly positive properties, employing pure software rendering discards the
opportunity to use hardware-accelerated graphical primitives for transforming widget rep-
resentations to pixels. The alternative of moving the second stage of the redraw processing
from main memory to local memory of the graphics card and letting the graphics card’s GPU
perform the transformation was elaborated in [72]. In the course of this work, DOpE’s graph-
ics back end had been implemented for the ATI Radeon 7500 and Matrox G450 graphics cards.
As the drawing of scaled images is the most performance-critical operation, the attempt was
made to find a temporal model for this operation, which takes the arguments of the operation
and the hardware-clipping conditions into account.

Although the implementation of DOpE’s graphics back end for the specific graphics de-
vices improved the graphics performance of DOpE dramatically, this approach is a dead end
with regard to enabling GUI clients to exploit hardware-accelerated graphics in parallel with
DOpE. Chapter 5 addresses this conflict.

2.3.3 Advanced features

In addition to the previously described redraw scheduling, DOpE’s local widget representa-
tion enables the effective implementation of advanced features such as partially translucent
windows, drop shadows, and arbitrarily-sized windows while maintaining bounded worst-
case redraw processing time.

A straight implementation of such features would employ the painter’s algorithm by draw-
ing windows from back to front and properly incorporating each window’s translucency
values for painting pixels (alpha blending). Therefore, the processing time for such a re-
draw operation would correlate with the number of overlapping windows and is unbounded.
DOpE’s redraw engine functions differently by prepending the actual redraw operation with
a geometric visibility analysis. For each pixel on screen, DOpE can determine the front-most
window that contributes to its color value. Based on this information, it subdivides each
redraw request into a set of fully exposed window areas and propagates a redraw request
to each of these windows. The window, in turn, decides if the background of the window
contributes to the window’s pixel (alpha value is smaller than 1.0). If so, the window first
issues a redraw operation for its used screen area to the windows that are visible through
it as part of the window’s background and then paints its foreground. Consequently, the
redraw engine always paints from front to back and lets the actual widget for each layer de-
cide to process another background layer (if the widget is at least partially translucent) or
not (if the widget is opaque) before applying its foreground colors. As a consequence of this
strategy, the costs of processing a redraw request comprising a number of translucent layers
depends on the policy of each incorporated widget but it can also be bounded by limiting
the recursion-depth of the background redraw processing. Imposing such a limit results in
depth-limited translucency and bounded redrawing costs. Figure 2.4 displays the result of
the depth-limited translucency algorithm for a limit of two translucent layers.

2.3.4 Evaluation

This section evaluates the design of the DOpE window server with regard to the chosen
server-side client representation and to its resource-scheduling approach. It condenses the
lessons learned and summarizes further observations made through my practical experi-
ments.

Effectiveness of DOpE’s resource scheduling DOpE obtains the parameters of its tem-
poral model for the prediction of redraw-job execution times from runtime monitoring of its

18

2.3. THE DOPE REAL-TIME WINDOW SERVER

Figure 2.4: Screenshot of DOpE with enabled depth-limited translucency.

drawing performance. As presented in Section 2.3.2, the use of software rendering with the
data path to the graphics device as the most significant performance constraint suggests a
proportional relationship between the number of pixels to redraw and the redraw-execution
time. In [57], this claim was thoroughly analyzed as a real-life use case for the Ferret runtime
monitoring framework.

The key finding of this analysis is the nonuniform pixel throughput to the graphics de-
vice on varying widths and heights of redraw operations as displayed in Figure 2.5. First, the
CPU caches improve the performance of redraw operations that span small address ranges, in
particular, redraw request with a small height. Second, the computational per-line overhead
of the pixel transfer loop becomes a significant contributor to the transfer costs for redraw
requests with a small width. Although these anomalies hint at possible refinements of the
temporal model, in practice, the simple model turned out to be effective for taking schedul-
ing decisions. With a typical workload, the corner cases of thin redraw operations occur
mostly combined with bigger redraw jobs and do not dominate the overall performance. This
behaviour is fostered by DOpE’s redraw merging technique. Furthermore, DOpE steadily
adapts its temporal model to the runtime-measured pixel throughput by using a sliding-
means algorithm. When a corner case dominates the redraw processing for a longer time, the
temporal model gets adjusted accordingly. As researched in [72], for hardware rendering, the
temporal models for drawing operations become nontrivial and show a large variance among
different graphics devices. Even on a single device, the rendering performance shows a high
variance depending on a large number of parameters such as pixel alignment, the hardware
clipping range, and texturing attributes. Without the deep insight into the inner functioning
of the GPUs of modern graphics cards, the construction of realistic temporal models becomes
almost impossible.

The overall responsiveness, performance, and output latency of the user interface as per-
ceived by the user are dictated by the parameters of DOpE’s strictly periodic main thread.
To guarantee the aliasing-free output of streaming pixel data at typical frame rates such as
25 Hz, 30 Hz, and 50 Hz, the Nyquist-Shannon sampling theorem sets forth to sample the
client representation at a frequency greater than twice the signal bandwidth (the maximum
rate at which the client updates its GUI representation). Consequently, a period length of 10
milliseconds for DOpE’s main thread turned out to satisfy this requirement.

19

CHAPTER 2. QUALITY OF SERVICE

width

he
igh

t

costs per pixel

Figure 2.5: DOpE’s pixel throughput is a nonconstant function of the width and height of redraw
operations. The data set is taken from [57] by courtesy of Martin Pohlack. It displays the
costs for the bus transfer per pixel for redraw requests ranging from 1x1 to 400x400 pixels.
The measurement was performed on an Intel Pentium-Pro machine clocked at 200MHz
with 8 KByte first-level and 256 KByte second-level cache (32 bytes per cache line). More
technical details and the measurement results for more recent machines are published in
[57].

The original implementation of DOpE provided a special treatment of streaming pixel data
as hard real time jobs by pre-allocating time slots for specialized real-time widgets that pro-
vided synchronization messages to the real-time client. In practical experiments with the
video-streaming application called Verner [61] however, this feature was discarded. Most
streaming videos use their audio track as primary time source. The coordination of the audio
timing and the GUI synchronization messages as provided by DOpE’s hard real-time widgets
turned out to be overly complicated. Second, performing GUI client updates on demand via
DOpE’s asynchronous client interface rather than using a negotiated fixed frame rate of a hard
real-time widget turned out to provide a lower output latency for the common case whereas
the worst-case latency remains still lower than 15 milliseconds2 on a two years old machine
with a Celeron D (Prescott) CPU at 2933 MHz, 256KB L2 cache, 512MB of memory, and In-
tel 915G graphics3. With enabled drop shadows and two levels of translucent windows, the
worst-case latency (each pixel is a composition of three colors) increases to 30 milliseconds.
Concluding from this experience, the special support of real-time clients operating at fixed
frame rates did not pay off. Instead, DOpE’s asynchronous client interface provides feasible
output latencies for each GUI client at the same time without requiring knowledge of the
client’s temporal profiles and without executing a client admission protocol.

Feasibility of server-side widgets The decision of using widgets as server-side client rep-
resentation was taken to broaden my experimental playground as much as possible and thus,
to enable the exploration of a number of GUI-server-related problems beyond quality of ser-

2 The worst-case latency is the sum of the period length of DOpE’s main thread and the time needed to perform
the redraw of the complete screen.

3 The frame buffer of 1024x768 pixels at 16bit color depth is mapped as cacheable memory with enabled write
combining.

20

2.3. THE DOPE REAL-TIME WINDOW SERVER

vice. One particular field of interest was the application of a domain-specific language as
client API for a GUI server. In my previous work on GUIs, I observed that the use of high-
level script languages such as Tcl/Tk [6] can drastically reduce the GUI-related code com-
plexity compared to the use of binary interfaces. Using such a high-level abstraction as client
interface of a GUI server raised interesting questions regarding the server-side performance
overhead on parsing textual commands, the costs of communicating textual strings instead
of binary data between client and server, the complexity of the server-side support code, and
the utility value and convenience of a language as API.

DOpE clients communicate with the DOpE server by using textual commands as illustrated
in the following example:

grid = new Grid()
button_1 = new Button(-text "OK")
button_2 = new Button(-text "Cancel")
g.place(button_1, -row 1 -column 1)
g.place(button_2, -row 1 -column 2)
win = new Window(-content grid)
win.open()

This example code creates a window presenting two buttons arranged horizontally within
a grid layout. Note that the GUI-describing code is principally generic and does not contain
resolution-dependent physical pixel values, font parameters, or style attributes. It is up to
the DOpE GUI server to translate this raw semantic description of widgets and their topol-
ogy to physical pixels in a way that fits the target device and the needs of the user best, for
example by adhering the look and feel as configured by the user. Each command is han-
dled by DOpE as a nonblocking atomic operation that returns immediately with either an
error code or a success indication. In contrast to the approach taken by Tcl/Tk, which uses a
turing-complete and powerful script language, the DOpE command language does not fea-
ture primitives for handling control flow or conditional execution. This design facilitates
DOpE’s simple program logic with regard to its client API and keeps the complexity of the
server-side command interpreter and the widget-support code for the textual commands at
less than 1,500 lines of source code (SLOC) [5]. Unlike the X protocol, which transports a
potentially high number of graphical primitives and pixel data from the client to the server
on each redraw operation, DOpE’s client API requires only few messages to communicate
the client representation to the GUI server and effectively decouples the client and the server
for the most of the time. In the extensive use of DOpE within our group during the past
five years, the communication and parsing costs turned out to be negligible compared with
costs of the implicated drawing operations. Furthermore, a detailed analysis of the pars-
ing overhead of DOpE’s textual command interface in [60] points out that the string parsing
costs are in the same range as the IDL stub costs. The alternative use of a binary interface
instead of the textual interface would gain only marginal performance but would sacrifice
the expressiveness and easy extensibility of the command language. On the other hand, the
convenience of using a dedicated command language for the interaction with the GUI server
remains unclear and depends on the preference of each programmer. Whereas several client
developers were fond of the rapid prototyping and debugging capabilities of this approach
and valued the flexibility of tag-value arguments for configuring widgets, others criticised
the use of two nested languages with different syntaxes as counter intuitive, for example C
code with inlined DOpE commands such as

dope_cmd(app_id, "w = new Window()");
dope_cmd(app_id, "w.open()");

21

CHAPTER 2. QUALITY OF SERVICE

I observed users of the DOpE client API to construct C++ wrappers for the command lan-
guage and take this as an indicator for a lack of convenience.

Beside the exploration of the textual client API for communicating the client-side GUI rep-
resentation to the GUI server, the presence of server-side widgets opened realms of opti-
mizations for advanced features such as translucency. In contrast to plain pixel-based client
representations that are only able to track translucency per window, DOpE is aware of the
translucency of each widget. Therefore, DOpE can perform effective optimizations. For ex-
ample, DOpE identifies redraw requests that refer to window regions that are completely
covered by an opaque widget of another window even if other parts of the covering win-
dow are transparent. In this case, DOpE is able to discard the redraw request. Furthermore,
server-side widgets minimize the coupling between GUI client and GUI server. After creat-
ing a window as done in the example above, the further handling of its rearrangement on
screen (move, top, resize) and the management of mouse highlighting and keyboard focus
are locally handled by DOpE and do not require any interaction with the client. The client
gets involved only when an event occurs for which the client signalled interest beforehand.
For example, to respond to the activation of a button by the user.

With ca. 6,500 SLOC, the implementation of DOpE’s widget set makes up half of the overall
source-code complexity of ca. 13,000 SLOC. The widget set provides only fairly basic widget
types that are supposed to be combined with each other to form more powerful higher-level
widget types implemented in the client. One example is a tree widget that is a composition
of several nested grid layout widgets for realizing the tree structure and vscreen widgets for
displaying the handles of the tree nodes.

2.4 Related Work on GUI-level Quality of Service

There exists surprisingly sparse work by the real-time community taking the special charac-
teristics of graphics operations on GUIs into account. I consider Artifact [63] as the most sig-
nificant contribution in this domain. Artifact is a real-time window system built in 1995 on RT
Mach. It differentiates between real-time clients and non-real-time clients. Real-time clients
can only use graphical operations with known execution times and must provide a client
model for the use of these primitives. In the GUI server, real-time and non-real-time requests
are processed by independent threads, which concurrently access the frame buffer and are
executed at different priorities. Artifact has no server-side knowledge about client represen-
tations but immediately reacts upon graphical commands supplied through client-interface
invocations. Consequently, the Artifact GUI server cannot perform redraw-dropping tech-
niques. In contrast to Artifact, DOpE does not require temporal models of client behaviour
because it performs the transformation from client representations to pixels locally.

As mentioned in Section 2.1, the traditional approach to achieve fluent media playback is
the use of hardware overlays that effectively remove the GUI server from the latency-critical
data path between the application and the hardware. A generalization of this technique that
moves the composition of the screen from multiple independent pixel buffers into the hard-
ware is described in [21]. The proposed hardware modification introduces a programmable
per-pixel indirection for pixel-read operations performed by the output unit of the graphics
device. For each pixel to be displayed in screen, a Frame-Selection-Vector table, exclusively
accessible by the GUI server, contains an offset value to be added to the current pixel address
when outputting the corresponding pixel. With such a hardware in place, the scheduling
policy of the underlying operating system would be directly applicable to graphics. To my
knowledge however, this technique was never implemented.

22

2.4. RELATED WORK ON GUI-LEVEL QUALITY OF SERVICE

In 1995, another approach for creating custom display hardware with QoS support was
conducted in the context of the Nemesis project. Nemesis [46] is an OS architecture special-
ized for distributed multimedia applications. Based on the observation that resource account-
ing and QoS scheduling become extremely hard when shared servers consume resources on
behalf of their clients, Nemesis facilitates the replication of typical server-side functionality
in each client and to leave only the functionality of low-level resource multiplexing to the
server. Ideally, if each client performs all the costly operations by itself and the resource mul-
tiplexing in a shared server is cheap, resources such as processing time or bus bandwidth can
be accounted per client and QoS scheduling becomes manageable.

The Desk Area Network (DAN) [16] provided an adequate environment for applying this
principle of Nemesis. In a DAN, each system device is interfaced to an Asynchronous Trans-
fer Mode (ATM) interconnect. In contrast to bus-based interconnects with variable-sized
packets, ATM is based on fixed-size packets called cells. Thereby, bus scheduling can be
performed at a fine granularity and at low jitter. DAN exploits these properties for enabling
devices to communicate with QoS guarantees. The DAN Framestore [58] is a frame-buffer
device that is capable of arbitrating the access to the physical frame buffer for up to 256
stream connections with individual QoS properties. To spatially isolate the different clients
on screen, the DAN Framestore performs key-based clipping protection. For each pixel, the
device maintains an additional tag value. In contrast to the frame buffer, the tag buffer is
only writable by a privileged software component. Each client stream has a unique stream
ID. When a client stream issues a write operation to a particular pixel, the DAN Framestore
performs the pixel-write operation only if the client ID equals the tag value of the targeted
pixel. The mode of operation of the Nemesis Window System [14] is that each client applies
arbitrary graphics operations such as drawing of lines, polygons, and text to a local pixmap.
Thereby, long-taking graphics operations are executed in the context of the client, which is
subject to the scheduler. During these operations, the client uses no shared resources and
thus, can be preempted at any time. After finishing its graphics operations, the client flushes
the modified pixels from the local pixmap to the frame buffer. Even though, ATM-based
interconnects between processor nodes and peripheral devices such as the DAN framestore
are able to provide a guaranteed communication bandwidth and thereby facilitate QoS, com-
modity desktop computers rely on hardly predictable bus architectures. Lacking the notion
of stream connections, a frame-buffer device connected to a bus cannot deploy an elegant
client-isolation scheme as the DAN Framestore’s key-based clipping.

In 2008, N. Manica presented a QoS enhanced version of the X window system [52]. The
work was motivated by the observation that overload situations imply a uniform perfor-
mance degradation of all X clients, including applications such as movie players that are
expected to provide quality of service. The X server performs costly operations on behalf of
its clients. When a client issues such an operation to the X server, the information about the
client’s priority is discarded. Priority inversion occurs when a high-priority client issues a
request and the X server is busy with processing a long-taking operation on behalf of a low-
priority client. The high-priority request gets further deferred by the default policy of the X
server: To minimize the visibility of intermediate drawing states on screen, the X server pro-
cesses all incoming requests from one client before processing its other clients. This results
in an unbounded priority inversion. N. Manica’s approach is replacing the default policy by
a custom scheduler that takes client-specific QoS parameters into account. The scheduling is
based on the concept of the constant bandwidth server (CBS) [12] for which each client is rep-
resented by its reservation period, scheduling deadline, the remaining budget of the current
period, and the maximum budget. When performing an operation for a client, the X server
decreases the client’s budgets accordingly. Operations are only issued for clients that have a
budget left for the current period. The order of serving requests of those clients is determined

23

CHAPTER 2. QUALITY OF SERVICE

by their scheduling deadlines. At the beginning of a new period, the client’s budget gets
replenished. For the admission of new clients, the X server performs a simple check against
the maximum utilization of 100%. Because once started X operations are not preemptible and
their execution times are not known in advance, operations may exceed the client’s budget
and thereby delay other client’s operations. The proposed CBS scheduler accounts the con-
sumed time by incorporating the negative budget into the client’s budget replenishment of
the next period.

The paper does not consider the duration of operations and states that thanks to the new
generation of graphics devices, operations are typically fast enough to enable a sufficiently
fine-grained scheduling. The experimental results show a great improvement for executing
multiple periodic X clients in parallel, for which the scheduling parameters are well defined.
Even when overloading the X server by the execution of xperf, the QoS clients preserve
their update rates. Effectively, the QoS problem of the X server gets translated to the policy-
definition problem of finding the right scheduling parameters for QoS clients. As noted in
the paper, determining correct scheduling parameters is not straight forward and gets further
complicated by the interaction of the X scheduler with I/O schedulers and the CPU sched-
uler. In contrast, DOpE’s periodic mode of operation combined with its redraw splitting and
redraw dropping techniques does not require scheduling parameters to be defined for each
QoS client. The quality of service for the entire GUI is a global system parameter that can be
adjusted at runtime. The work presented by N. Manica does not consider non-malicious X
clients and does not take operations with side effects into account. For example, moving a
window as exploited by the code example in Section 2.1.3 implies that other client windows
must be updated.

N. Manica argues that implementing a solution for the particular QoS problem from
scratch—as I did with DOpE—discards compatibility to existing applications and thereby
disqualifies such solutions from real-world usage. Therefore, an evolutionary improvement
of an existing and mature GUI server was preferred over a new design. With the following
chapter, I recognise the compatibility problem but my favored solution to that problem is
different from an evolutionary approach.

24

Chapter 3

Compatibility

Sec
urity

Compati
bilit

y
Performance

Quality of

Service

GUIGUI

The beginning of the previous chapter presented the difficulty of incorporating changing
requirements into a complex existing software design under the constraint of maintaining
backward compatibility, which significantly limits the problem-solving space. On the other
hand, ignoring the backward-compatibility constraint clears the way for a fresh design that
takes the changed design premises fully into account. In the case of delivering quality of ser-
vice at the GUI level, DOpE’s design from scratch turned out to deliver a low-complex and
elegant solution for problems, which were considered as virtually impossible to solve purely
in software for existing commodity window systems and even facilitated hardware mod-
ifications. Regardless of technical advantages however, by sacrificing compatibility, a wide
adoption of the fresh design seems to be infeasible because users rely on existing applications.

As the conflict between carrying design legacies for the sake of compatibility and the clarity
of software design does not only apply to GUIs but is a general problem on the OS level,
several approaches for integrating legacy software into new execution environments have
been developed. The approaches differ in the degree of achieved compatibility and in the
required engineering costs.

Standard protocols and binary-level interfaces (ABI) as relied on by legacy applications can
be built into the new execution environment. For example, a VT100-conforming terminal
service enables command-line-based applications to be displayed in DOpE windows. In a
similar fashion, legacy applications that rely on the pSLIM [41] protocol are supported by a
service that translates the pSLIM protocol to a DOpE window. For achieving compatibility
with X applications however, this approach is not practical. In contrast to simple protocols
such as pSLIM or VT100, the X protocol as one of the most essential GUI-related protocols

25

CHAPTER 3. COMPATIBILITY

is complex and, therefore, costly to reimplement. A characteristic example of applying this
approach is conducted by the Wine [8] project, which is an ongoing endeavor to reimplement
the Windows OS ABI and libraries to enable the execution of unmodified Windows applica-
tions on UNIX. After the tremendous work of 12 years of development and with the support
of more than 50 developers, Wine reached the state of a beta version (0.9), which supports a
wide range, yet not all, of Window’s applications.

With the rise of the free-software ecosystem, providing compatibility on the source-code
level in the form of compatible application programming interfaces (API) has become a feasi-
ble approach for satisfying the user’s demands for applications on a new OS platform with
the steadily growing pool of open-source applications. On the protocol level, X.org [33] as the
most prominent open-source X server implementation, can be ported and adapted to a new
OS environment. For example, the adaption of X.org to (the fully POSIX compatible) Mac
OS X comprises ca. 12,000 SLOC and, thereby, makes the X protocol natively available to the
Mac OS X window system. Even though the engineering cost appears moderate, the actual
execution of X clients require the further porting work of complex client libraries. On the
application level, several APIs, most prominently Qt, Gtk, WxWidgets, and libSDL, evolved
during the past decade as de facto standards and each supports a wide range of applications.
The implementations of the above mentioned APIs feature a clean separation of platform-
dependent and generic code and, thereby, are easily portable. As described in [34], the port
of libSDL to DOpE running on DROPS [37], which features only rudimentary POSIX compat-
ibility, made applications such as Quake natively available on DOpE. In another experiment,
the embedded version of Qt was ported to the DROPS environment [71]. Consequently, ap-
plications that solely depend on the Qt API can be ported to DROPS by a simple recompile.
In practice however, such applications are rare. Most applications rely on further infrastruc-
ture such as convenience libraries or the UNIX file-system layout. Whereas the attainable
coverage of supported legacy applications is largely constrained by such dependencies, the
approach requires a continuing development work for keeping the ported API implementa-
tion up-to-date with the upstream version as required by the applications.

By natively supporting protocol stacks, ABIs, or APIs, significant development and main-
tenance costs are required whereas the achievable compatibility and application coverage re-
main suboptimal. The complementary approach is to support unmodified legacy software
through machine-level compatibility. This approach is widely deployed by the means of
remote-desktop protocols (RDP), which make the GUI of a remote physical machine accessi-
ble to a workstation over a network connection. Both the remote machine and the workstation
may run entirely different operating systems. The simplicity of a RDP such as SLIM [65] en-
ables a low-complex implementation on the workstation side. On the other hand, application
compatibility is fully maintained because the original legacy OS is used on the remote ma-
chine. These advantages are still preserved when consolidating the remote machine and the
workstation into one machine by using a virtual-machine monitor and thereby avoiding the
costs of operating multiple physical machines.

Today there exists a wide variety of virtualization products such as VMware [7], Virtual PC,
Parallels, and Virtual Box [47] that enable the reuse of unmodified guest operating systems.
Furthermore, projects such as L4Linux [38] and Xen [15] demonstrated near-native perfor-
mance of slightly modified guest OSes.

Among the presented approaches to providing compatibility to legacy applications, vir-
tual machines (VM) achieve the best level of compatibility at acceptable performance and
without the need for extra hardware. In contrast to API/ABI-based approaches, beside the
initial engineering costs for providing the virtual-machine implementation, further advances
of legacy GUI-based applications and the guest OS imply no further maintenance work be-

26

3.1. USER INTERACTION WITH MULTIPLE VIRTUAL MACHINES

cause the hardware interface as relied on by guest OSes and provided by a virtual machine
remains rather static.

Section 3.1 introduces the different approaches of user-interaction with virtual machines
and describes my proposed technique to seamlessly integrate guest GUIs into the host GUI.
Section 3.2 describes two experiments that I conducted to validate the feasibility of the taken
approach and to estimate the involved engineering costs. Section 3.3 presents an opportunity
to shorten the data path between a guest GUI and the physical frame buffer by using a hard-
ware overlay as provided by commodity graphics devices. Section 3.4 closes the chapter by
presenting a timeline of projects employing related techniques.

3.1 User interaction with multiple virtual machines

A VM exposes virtualized standard hardware devices to the guest OS to enable the reuse of
guest-OS device drivers for performing input and output. With regard to the GUI, virtual
input devices and a virtual frame-buffer device interface the guest OS to the host GUI. The
guest window system translates the semantic GUI representation of windows, widgets, and
other GUI features of the guest OS to pixels and writes them to the virtual frame buffer. The
host OS, in turn, displays the virtual frame buffer of the VM on the host GUI and thus, makes
the guest GUI visible to the user. At the host GUI level, the guest GUI is regarded as nothing
more than a 2D image, which can be displayed as a virtual console or in a host window. A
host GUI that provides virtual consoles time-multiplexes the physical frame buffer to make
one of potentially many virtual frame buffers visible at a time. Typically, the user chooses
the virtual frame buffer to be displayed by using keyboard shortcuts that are interpreted by
the host GUI. This simple mode of user interaction is suitable for users that switch between
multiple domains at a low rate, for instance for running a version of the X window system on
Linux as host OS while executing one instance of Windows OS within a VM for the sporadic
use of a Windows application. For switching domains at a high rate or for tight cross-domain
interaction such as transferring data between domains via drag and drop, this approach be-
comes unsuitable. In addition to the temporal multiplexing of the physical frame buffer as
provided by virtual consoles, a host window system is able to spatially multiplex the physical
frame buffer to present a (guest) window system in a (host) window system and thus, facil-
itates better integration of multiple VMs into one GUI. For example, the concurrent output
of multiple VMs can be made visible at the same time and data can be transferred between
domains via drag and drop. From the usability perspective, such nested window systems
are still inconvenient to use because all windows of the guest GUI are displayed at the same
window-stacking position of the host GUI. Interacting with only a small guest window pol-
lutes the host-screen real estate with the complete guest window stack and the guest desktop.
Furthermore, with a growing number of virtual machines used in parallel, user interaction
via both alternatives—virtual consoles and nested window systems—becomes unnatural and
inefficient.

3.1.1 Displaying guest windows in host windows

Presenting each guest window in a dedicated host window would overcome these usability
problems. The virtual frame buffer as exported by the VM, however, contains no higher-level
semantics such as the window layout about the contained pixel data. A reconstruction of
these information from outside the guest OS is impossible. An ideal guest OS would export
its GUI via a higher-level protocol than a virtual frame buffer, for example by exporting the
content of each window in a separate pixel buffer to the host OS. The host OS could then

27

CHAPTER 3. COMPATIBILITY

Physical
frame
buffer

Virtual
frame
buffers

Figure 3.1: Seamless integration of two guest GUIs into one host GUI. Each guest GUI manages its
local window stack and performs graphics operations onto a virtual frame buffer. The
host GUI uses the window state information of all guests to derive a consistent global host
window stack. Each host window displays fragments of the corresponding guest’s virtual
frame buffer.

properly incorporate these pixel buffers into host windows to provide a seamless integration
of the guest GUI into the host GUI. But as legacy OSes are not prepared for such a technique,
abandoning the virtual frame buffer in favor of a higher-level protocol for their GUI out-
put is impractical. The way of how windows are managed and how redraw operations are
performed widely differs among legacy OSes. Each legacy OS would require a manual and
potentially drastic adaption, which effectively locks out proprietary legacy OSes for which
the source code is not publicly available. Instead of discarding the virtual frame buffer, the
seamless integration of guest windows into the host desktop can alternatively be achieved
by supplementing the virtual frame buffer by a simple protocol for exporting the information
about the guest OS’s window layout.

At the first sight, the generic export of window-state information from arbitrary legacy
window systems is complicated because the guest-OS-internal data structures for represent-
ing windows may differ significantly and may be inaccessible for proprietary legacy OSes.
Keeping the host window stack and the legacy window stack consistent by polling the guest
OSes data structures is not feasible. On the other hand, window-state transitions such as win-
dow movements and stacking-order changes are easy to export by installing a simple tracking
program in the legacy OS. By exporting each state transition of the guest window system to
the outside of the VM, the host OS is able to construct a model of the guest window configu-
ration that remains consistent with the guest GUI through applying each guest-window state
change to the model. The host window system can then use this model to create a host win-
dow for each guest window and to display the corresponding parts of the virtual frame buffer
within these host windows. Figure 3.1 displays a scenario with two guest GUIs merged into
the frame buffer of the host GUI. The virtual frame-buffer representation with the incomplete
knowledge of the content of partially covered guest windows is sufficient for transporting
the pixel data from the guest GUI to the host GUI because the covered content of a partially
covered guest window remains covered also in the host GUI.

Complementary to the propagation of guest-GUI state transitions to the host GUI, host-
sided GUI transitions must be applied to the guest GUI consistently. Intuitively, the policy of

28

3.2. FEASIBILITY ANALYSIS THROUGH EXPERIMENTS

the host GUI’s window management should be stronger than the guest GUI’s policy to protect
the user from denial-of-service problems driven by a corrupt guest GUI. When moving a host
window, we expect the corresponding guest window to follow. Consequently, bidirectional
communication between the host GUI and the guest GUI for propagating window-state tran-
sitions is required to preserve the consistency between the guest GUI and the corresponding
host windows.

3.1.2 Input handling

For propagating user input from the keyboard and the pointer device into the guest GUI,
VMs provide device models for standard hardware interfaces such as PS2 and convert host
input events to synthetic interrupts and device-register values. Therefore, unmodified guest-
OS drivers for mouse and keyboard can interpret these hardware events and enable the guest
OS to manage its local mouse pointer and keyboard focus transparently. When seamlessly
integrating the guest GUI into the host GUI, we expect the host mouse pointer and the
guest mouse pointer to correspond. Feeding relative mouse events to the guest OS, how-
ever, discards the absolute position of the host mouse pointer and the guest OS may nonlin-
early transform relative mouse events to the mouse-cursor position, for example by applying
mouse-cursor acceleration. Hence, instead of using a mouse protocol supporting only rela-
tive motion events, an absolute input protocol such as the Wacom Artpad protocol should be
employed for feeding absolute pointer coordinates to the guest OS.

3.2 Feasibility analysis through experiments

Apart from the general considerations expressed by the previous sections, the following tech-
nical questions decide upon the feasibility of the approach: How complex is the protocol
for communicating window-state transitions and what types of state transitions must be in-
cluded to maintain consistency between guest GUI and host GUI? Which communication
mechanism can be used to adequately transport window-state protocol messages? What are
the proper hooks in existing legacy OSes to use for obtaining window-state transitions and
for imposing window-state changes into the legacy GUI? How complex are the changes of
the legacy GUI? Is the approach practically applicable to proprietary legacy GUIs? To answer
these questions, I conducted a series of experiments.

The practical evaluation of the approach requires an experimentation platform that features
a host GUI and a facility to execute a legacy OS inside a VM. A Linux OS executing the X
window system as host GUI and Qemu as container of a guest OS would suffice. As I steer
my research towards highly secure and low-complexity OSes, I selected DROPS [37] with
L4Linux [40] as legacy OS and the DOpE host GUI as experimentation platform with the aim
of determining the lowest possible OS requirements for applying the described techniques.
DROPS is an L4-microkernel-based [49, 43] OS that facilitates the execution of low-complexity
native applications alongside L4Linux as a user-level variant of the Linux kernel and enables
message-based communication between L4Linux user processes and native DROPS programs
via the L4 inter-process-communication (IPC) mechanisms.

3.2.1 The X window system

The GUI integration technique as described in Section 3.1 relies on a virtual frame buffer,
virtual input devices, and a hook in the guest-GUI to propagate window-state transitions
between the host GUI and the guest GUI. L4Linux provides a virtual frame buffer and virtual
input devices such that the X.org [33] server can be executed unmodified.

29

CHAPTER 3. COMPATIBILITY

In the X window system, the arrangement of windows is handled by a window manager,
which is a special X client. The X window manager gets notified for each new window to
be created within the X session and it implements the policy of displaying and handling
window elements such as the title and the handles for resizing and maximizing the window.
By replacing the X window manager with a custom implementation, we get full control over
the window policy of the X session. For my experiment, I slightly enhanced a version of the
AEWM [32] window manager to propagate the following window-state transitions from the
X window system to DOpE:

Create window The host GUI gets notified for each guest window. In return, the X window
manager receives a handle from the host OS to further reference the created window.

Destroy window The X window manager informs the host GUI about a disappearing guest
window by specifying the corresponding window handle.

Place window The X window changes its position on screen. This event must be communi-
cated in both directions because any X client as well as the host GUI may move or resize
windows.

Stack window A window can change its stacking position within its local window stack, for
example a window comes to front when its content receives a mouse click. The host
GUI can also impose a change of the stacking order of windows, for example when
the user clicks on a host-window title. Therefore, window-stacking transitions must be
communicated in both directions. When reported, the stack-window transition refer-
ences the new neighbor window in the window stack and specifies whether the new
position is in front or behind the referenced window. Furthermore, the foremost and
backmost window positions can be specified.

The X window manager implements this simple RPC protocol directly via L4 IPC mecha-
nisms and thereby communicates with the DOpE window server without an indirection over
virtual devices. It is implemented in less than 1,500 SLOC. For other virtual machines that
do not feature IPC mechanisms, communication over a virtual network device would be a
viable alternative. In this case, the host window system could provide its interface via a net-
work proxy connected to a virtual network device of the VM. The required communication
bandwidth is negligible because messages contain only geometric coordinates and window
handles but no pixel data and the number of messages is bounded by the interactivity of
the user. Furthermore, the latency requirement of the message-passing mechanism is low
because the transmitted messages only delay the restoration of the consistency between host
GUI and guest GUI on rare window rearrangements but not on the frequent user interaction
with the window content, which is provided by the virtual frame buffer of the VM. Therefore,
message latencies of several milliseconds still yield acceptable accessibility.

To further enhance the integration between the DOpE host GUI and X.org and to maximize
graphics performance, I implemented custom X.org drivers for screen output and user input
that directly use DOpE’s client interface via L4 IPC mechanisms rather than relying on the
indirection through the virtual devices as provided by L4Linux. The complexity of these
custom drivers is less than 1,000 SLOC.

In the process of integrating the X window system into the DOpE host GUI, neither the X
server nor the L4Linux kernel had to be modified. The official X.org device-driver API and the
X window-manager concept provided appropriate hooks to achieve the seamless integration
at the low engineering costs of developing less than 2,500 SLOC.

30

3.3. DATA PATH FROM THE GUEST GUI TO THE PHYSICAL FRAME BUFFER

3.2.2 The Atari GEM GUI

The integration of the X window system as described in the previous section represents an
overly optimistic case because the X window system provides well-established interfaces for
obtaining and imposing window-state transitions. To explore the opposite case and challenge
the approach with an overly pessimistic case, I experimented with the Digital Research GEM
GUI of the Atari TOS operating system, which I consider a legacy GUI in the strictest sense.
The GUI is integrated into the OS and the source code of the OS is unavailable. Although the
GEM GUI features a window system, the OS does not provide a mechanism analogously to
an X window manager for intercepting window operations.

For running GEM inside a VM, I ported the Atari ST emulator Hatari [4] to run natively
on the DROPS platform. Hatari uses libSDL [34] as its hardware-abstraction layer and, in
turn, emulates the complete hardware of an Atari ST computer including display, mouse,
and keyboard.

For passing window-state transitions in and out of the Hatari VM, I enhanced Hatari by
a custom virtual hardware device that implements the window-state transition protocol as
device transactions on virtual hardware registers. The device model, in turn, uses the L4 IPC
mechanism to communicate with the DOpE host GUI. To make GEM use these new virtual
hardware facilities, I had to install a small hook of less than 200 lines of assembly code at
the GEM system-call interface. As a single-tasking OS at the time of 1986, the OS does not
take measures against user programs hooking into the exception vectors of the machine. The
custom trap handler monitors the system-call interface for window operations, writes the
system call arguments of window operations directly to the custom hardware registers and
resumes with executing the original OS code. Furthermore, a timed loop that gets coopera-
tively scheduled by the OS periodically polls the custom virtual hardware-register interface
for window-transitions imposed by the host GUI and applies them to their corresponding
GEM window.

This experiment demonstrates that even if appropriate interfaces for installing window-
management hooks are not in place, the technique for seamlessly integrating legacy GUIs is
applicable at moderate engineering costs.

Figure 3.2 displays the result of the conducted experiments. L4Linux executes Xeyes (left)
and Xterm (center) via the X window system while the Hatari VM executes native GEM-based
applications (upper left and top). Furthermore, native L4 applications (right and lower left)
show off the real-time properties of DOpE by using its native client interface.

3.3 Data path from the guest GUI to the physical frame buffer

Because the rendering in the described experiments is performed by the guest GUI via soft-
ware routines that operate on a virtual frame buffer, the performance of the guest GUI’s
graphics routines and the data path from the virtual frame buffer through the host GUI to the
physical frame buffer of the graphics device determines the effective output performance.

Figure 3.3 illustrates the data path for using the X window system as guest GUI and DOpE
as the host GUI. Thanks to the shared-memory facility provided by the DROPS experimenta-
tion platform, both the X server and DOpE can access the same pixel buffer via shared mem-
ory such that no pixels must be copied to keep the virtual frame buffer and DOpE’s server-
side representation consistent. DOpE provides an effective mechanism to display arbitrary
portions of one and the same pixel buffer in multiple windows that can be freely positioned
on screen. Therefore, no copy operation is required to transform the virtual frame buffer into
the snippets displayed by different host windows. Finally, DOpE’s redraw engine copies the

31

CHAPTER 3. COMPATIBILITY

Figure 3.2: GEM and the X window system integrated into DOpE.

DOpE

Graphics Device

 X Server
Guest GUI Guest GUI

manipulate

Virtual
Frame Buffer

Virtual
Frame Buffer

CO
PY

Physical
Frame Buffer

Video Signal

COPY

Figure 3.3: Data path from the guest GUI to the physical frame buffer.

32

3.3. DATA PATH FROM THE GUEST GUI TO THE PHYSICAL FRAME BUFFER

Graphics
 Device

 X Server
Guest GUI

 Guest GUI
manipulate

Virtual
Frame Buffer

Virtual
Frame Buffer

Video Signal

Key
Color

MUX

Overlay
Buffer

CO
PY

Apply
Key

Color

window state
change

configure

Host
GUI

Physical
Frame Buffer

Figure 3.4: Data path if using a hardware overlay for the seamless integration of one guest GUI along-
side another virtual-frame-buffer-based guest GUI.

buffered pixels to the physical frame buffer by applying the redraw technique described in
Section 2.3.2. As the data path is the same as when following the desktop-in-window ap-
proach, the usability benefit of the seamless GUI integration comes at no additional costs.

For the special case of integrating only one guest GUI into a host GUI, the hardware overlay
of commodity graphics devices provides the opportunity to eliminate the pixel-copy opera-
tion from the buffer to the physical frame buffer. As mentioned in Section 2.1.2, hardware
overlays were originally introduced to enable media players to bypass the window system.
For each pixel of the physical frame buffer, the graphics device compares the color value
against a defined key color and, if equal, displays a pixel from the overlay memory portion
instead of the frame-buffer color. If placing the hardware overlay in correspondence to the
physical frame buffer, writing the key color to the physical frame buffer makes the corre-
sponding pixel from the overlay buffer visible on screen. The actual per-pixel compositing
work is then performed by the hardware.

As illustrated in Figure 3.4, the host GUI exclusively controls the video registers of the
graphics device and the physical frame buffer and can therefore control the visibility of the
overlay buffer per pixel by writing the key color to each pixel of the physical frame buffer
that corresponds to a guest window’s content. The host GUI can make the overlay buffer
directly accessible to the guest OS as virtual frame buffer. Because the virtual frame buffer
resides on the local device memory, the guest GUI could even use the GPU of the graph-
ics device to perform hardware-accelerated graphics operations targeted at the virtual frame
buffer. Even though this solution does not scale if the number of guest OSes exceeds the num-
ber of hardware overlays, it covers the common case of interacting with one performance-
demanding main application while having several other programs with weaker performance-
requirements present on screen. Furthermore, this technique supports operating the guest
GUI at a different resolution and color depth as the host GUI by exploiting the overlay’s

33

CHAPTER 3. COMPATIBILITY

hardware-scaling facility and pixel-format configuration as supported by today’s commodity
graphics devices.

3.4 Related work on seamless window-system integration

The general approach of seamlessly integrating multiple de-privileged window systems into
one screen was invented in 1990 by J. Epstein et al. for the Trusted X (TX) [24, 22] window sys-
tem. For accommodating existing programs using the X protocol but still providing strong
isolation between multiple protection domains, the X server was split into a low-complex
trusted back-end part (TX TCB) and an untrusted single-level server such that multiple in-
stances of the single-level server could be executed in parallel on top of the TX TCB. Whereas
the TX TCB included the fundamental services for multiplexing the display, routing user in-
put, and enforcing security policy, the single-level server contained the major parts of the
high-complex X-protocol implementation. The TX Display Manager provides windows as
first-level objects, to which each single-level server supplies the pixel data that corresponds
to its local virtual windows. Due to missing shared-memory primitives of the underlying
Trusted Mach platform, output operations by the single-level servers onto their virtual frame
buffers had to be copied to the TX display manager. The resulting graphics performance and
inability to exploit hardware-accelerated graphics operations were identified as weak spots
of the TX implementation. In his further work, J. Epstein recommended to move the compo-
sition of the visible screen from multiple virtual frame buffers to the graphics hardware [21].
The proposed hardware modification introduces a programmable per-pixel indirection for
pixel-read operations performed by the output unit of the graphics device. For each pixel to
be displayed on screen, a Frame-Selection-Vector table, exclusively accessible by the host GUI,
contains an offset value to be added to the current pixel address when outputting the corre-
sponding pixel. In effect, this proposal is a generalization of hardware overlays, for which
pixels containing the color key loosely correspond to Frame-Selection Vectors. Despite of the
appealing simplicity of J. Epstein’s proposal, such a generic facility to spatially multiplex the
physical frame buffer has not found its way into the presently available commodity graphics
devices.

As presented in [22], the implementation of the TX TCB comprises circa 12,700 LOC. Al-
though the publication does not quantify the engineering costs for the adaption of the MIT-
developed X window system to enable its execution as single-level server, it describes these
changes to be not invasive. Despite its universality, the TX TCB was never evaluated against
GUIs other than the X window system because the primary focus of the project was compli-
ance to the X protocol. However, the results of my experiments suggest that the generalized
approach embraces the usage of other legacy GUIs at moderate costs. In [30], I further elab-
orated on additional application scenarios of the technique, for example, for integrating the
Windows OS GUI into the X window system as host GUI by using VMware on Linux.

Since 2001, the seamless integration of multiple windowing systems into one desktop were
featured in several products, for which details about the taken approach and the implemen-
tation costs are not public. With the release of Apple’s Mac OS X, an execution container for
classic Mac OS 9 applications was provided. This Classic Environment featured the seamless
integration of Mac OS 9 windows with their original window style into the Apple Quartz
window system of Max OS X. Furthermore, the release of Mac OS X included a modified
version of the X.org X window system that is able to seamlessly integrate X windows into
the Apple Quartz desktop. The adaptation of X.org to Mac OS X consists of more than 11,000
SLOC, which hints at rather invasive changes of the X server. In 2006, the seamless integra-
tion of the Windows GUI into Mac OS X was announced as a new feature of the Parallels VM

34

3.5. LESSONS LEARNED

software. In 2007, the two competing VM products VMware Fusion [7] and Parallels provide
this feature (called Unity and Coherence respectively) and advertise the tight integration of
the Windows GUI and the Mac OS X GUI as a breakthrough.

3.5 Lessons learned

With my elaboration on the cost and feasibility of seamlessly integrating legacy GUIs into one
host GUI, I found that the combination of virtual-machines with the presented frame-buffer-
composition technique provides a practical solution for providing compatibility to legacy
GUI-based applications. This approach removes the burden of legacy considerations from
the design of the host GUI. The functional requirements posed on the host GUI for accom-
modating any number of guest GUIs at the same time are surprisingly little. This realization
was the driving motivation for the work described in the following chapter. As learned from
the conducted experiments, the required modifications of legacy GUIs are marginal, which
supports the practical feasibility of the technique with regard to engineering costs. Of these
modifications, the hook for enabling the guest GUI to react upon window-state changes of
the host GUI turned out to be the only tricky part because this hook requires the guest OS to
listen for incoming control commands and a facility for controlling the legacy window sys-
tem. Both are unnatural additions to the legacy GUI, which—fortunately—can be avoided as
explained in the following chapter.

35

Chapter 4

Kernelizing the Host GUI

Sec
urity

Compati
bilit

y Performance

Quality of

Service

GUIGUI

4.1 Approaching security

The security of an application is subject to two classes of problems:

1. Protocols that were not designed with a specific attacker model in mind but that are
nevertheless used for security-sensitive tasks while potentially being exposed to such
attacks

2. Bugs in the application or in system components on which the application relies

Typical for the first class of problems is UNIX that enforces discretionary access control to
protect different users of the same LAN from each other while assuming that each user’s
applications act in the interest of the user. By following this assumption, the attacker model
is represented by a malicious user who tries to gain unauthorized access to another user’s
account. The X window system has built-in protection against this threat by the means of
the X authentication protocol that checks the authorization of the user when a user’s client
connects to an X session. Once permitted access to an X session, each X client can arbitrarily
interact with all other X clients of the same session, for example by sharing data over the
X clipboard protocol, by painting into another X client’s window, by killing another X client
(xkill), by locking the X session by a full-screen window (xlock), or by retrieving the user’s
input to any X client (xeyes). By executing untrusted and potentially malicious applications

37

CHAPTER 4. KERNELIZING THE HOST GUI

side by side, the user breaks the premise of the security model. Today, when using UNIX
and the X window system for browsing the internet, running scripts fetched from untrusted
websites, and executing downloaded code in a browser plug-in, the fundamental assumption
that each application acts in the interest of its user has become unrealistic. The extensive
undertaking of extending the Linux kernel with mandatory access control as security feature
as done by SELinux [50] considers the presence of malicious applications. On the GUI level,
this work is supplemented by the X Access-Control Extension (XACE) [18, 69, 70]. Despite
of the tremendous efforts that went into incorporating mandatory access control into Linux,
SELinux and XACE are not widely deployed by commodity Linux distributions. The applied
methodology of improving the security of an existing software design by fixing critical holes
in interfaces and protocols and adding security features to the system remains to be a fight
against symptoms. The cause of the security problems lies in the use of inadequate interfaces
and protocols.

4.1.1 Security by design

The complementary approach is the redesign of the system software from the ground up by
taking a realistic attacker model into account. In contrast to fighting symptoms, this route has
the potential to eliminate the root of weak security. Capability-based operating systems such
as EROS [66] facilitate the enforcement of the principle of least privilege throughout the whole
OS and can thereby provide strong isolation between applications. In 2004, J. Shapiro intro-
duced the EROS Trusted Window System (EWS) [67], which exploited the inherent strengths
of capability-based system design with regard to security to isolate GUI clients. The fresh
start and the opportunity to redesign the software accommodates the goal of strong security
well but, at the same time, sacrifices compatibility. EROS with EWS support only a dedi-
cated set of applications crafted for this particular platform. The broad range of commodity
software remains unavailable.

4.1.2 Application-specific trusted-computing base

In contrast to the problems caused by insufficient protocols that can be tackled by carefully
analyzing and refining the weak spots, programming bugs as the second class of problems
impose a rather diffuse threat on the applications’ security. Regardless of the strength of a
software design with regard to security, programming errors in security-critical code do hap-
pen and—as the growing market for trading zero-day-exploits suggests—attackers do not
hesitate to exploit these errors. The amount of security-critical code differs for each appli-
cation. In addition to the application’s code, the code of each system component that has
direct or indirect control over the execution of the application (affecting availability and in-
tegrity) or that can access the processed information (affecting confidentiality and integrity)
is security-critical. The sum of these components is called trusted computing base (TCB) of
this application 1. For example, the TCB of the Enigmail email-signing application executed
on a commodity Linux distribution comprises the following components:

• The Linux kernel, which has control over all physical resources in the system

• All loaded kernel modules such as device drivers, which share the unlimited privileges
of the Linux kernel

1In the following, TCB refers to software components only. If applied more precisely, the term TCB would also
comprise hardware and firmware.

38

4.1. APPROACHING SECURITY

• All processes that are executed as root and can therefore load arbitrary code into the
kernel, access all files in the system, and control all other running processes. For a
typical Linux setup, this applies to all system startup scripts and long running user-
level services (daemons) such as init, syslogd, acpid, inetd, powernowd, hald,
cron, login, and dhclient.

• The X window system including the X server, the X extensions, and graphics drivers

• The desktop environment such as Kde or Gnome, which includes the window manager,
control panels, file manager, and applets

• GUI client libraries as relied on by the majority of GUI applications, for example the
Mozilla Thunderbird email program relies on the following shared libraries (as returned
by the ldd command), which accumulate to more than 10 MB of stripped binary size:

/usr/lib/libplds4.so.0d
/usr/lib/libplc4.so.0d
/usr/lib/libnspr4.so.0d
/lib/libpthread.so.0
/lib/libdl.so.2
/usr/lib/libgtk-x11-2.0.so.0
/usr/lib/libgdk-x11-2.0.so.0
/usr/lib/libatk-1.0.so.0
/usr/lib/libgdk_pixbuf-2.0.so.0
/usr/lib/libpangocairo-1.0.so.0
/usr/lib/libfontconfig.so.1
/usr/lib/libXext.so.6
/usr/lib/libXrender.so.1
/usr/lib/libXinerama.so.1
/usr/lib/libXi.so.6
/usr/lib/libXrandr.so.2
/usr/lib/libXcursor.so.1
/usr/lib/libXfixes.so.3

/usr/lib/libpango-1.0.so.0
/usr/lib/libcairo.so.2
/usr/lib/libX11.so.6
/usr/lib/libgobject-2.0.so.0
/usr/lib/libgmodule-2.0.so.0
/usr/lib/libglib-2.0.so.0
/lib/libm.so.6
/usr/lib/libstdc++.so.6
/lib/libgcc_s.so.1
/lib/libc.so.6
/lib/ld-linux.so.2
/usr/lib/libpangoft2-1.0.so.0
/usr/lib/libfreetype.so.6
/usr/lib/libz.so.1
/usr/lib/libexpat.so.1
/usr/lib/libXau.so.6
/usr/lib/libpng12.so.0
/usr/lib/libXdmcp.so.6

• All processes executed by the user, which can access and control all the user’s files and
processes, for example via strace, the GNU debugger, or the kill command

• All X clients that share the same X session

• The Thunderbird email program

• The Enigmail application and the GNU Privacy Guard

The source-code complexity of Enigmail’s TCB stacks up to over ten million lines of code.
Software written in leading-edge software-development organizations can be expected to
have a defect density of 2 defects per 1,000 SLOC [51]. Following the optimistic assump-
tion that Enigmail’s TCB is subjected to equally rigid quality-assurance measures, the con-
fidentiality of data processed by Enigmail is endangered by thousands of potential attack
vectors due to programming bugs in its high-complexity TCB. Although there exist multiple
approaches for increasing the confidence in the correctness of software such as exhaustive
tests, code auditing, static code analysis, and formal verification, those measures are either
limited in coverage or they scale badly with increasing complexity. For today’s commodity
OSes, system complexity is the peril of security that even overshadows the design problems
of their protocols and interfaces. The drastic reduction of the TCB complexity is the only ef-
fective measure to counter the total number of attack vectors that put application security at
risk.

39

CHAPTER 4. KERNELIZING THE HOST GUI

As presented in [39, 45, 42], the functional requirements from an OS for hosting a guest OS
on top can be implemented in less than 100,000 SLOC. Such an implementation allows for the
concurrent execution of a sand-boxed legacy OS alongside a low-complexity software stack
for security-sensitive native applications. In addition, recent hardware enhancements by CPU
vendors such as Intel [9], AMD (Pacifica), and SUN [48] facilitate further simplification of the
VM monitor implementations. Virtualization combined with the GUI integration techniques
as presented in the previous chapter relieve us from the burden of carrying legacies and allow
for a fresh start for designing a both VM-capable and secure OS and the host GUI by following
the principles of minimalism and least privilege. Thereby, strong security and the potential
for large deployment enabled by maintained compatibility are no longer a contradiction.

4.2 Premises for designing the host GUI server

For minimizing the host GUI server, the same principles apply as for constructing microker-
nels:

Orthogonal and minimal interface Only the functionality that is required for maintaining
security or that is fundamental for enabling workload should be implemented in the
GUI server and provided to its clients via a simple protocol. Functionality that can be
implemented outside the server is excluded from the server.

As a consequence, all further functionalities that are not provided by the server yet
required by all clients must be replicated in each client. This does not imply that each
client has to bring along a substantial amount of overhead. Shared libraries can provide
functionality that is common among multiple clients and must be loaded only once.

Separation of policy and mechanism In existing GUI servers, policy management is a ma-
jor contributor to complexity. Examples for such policies are the placement strategy for
new windows, the management of fonts, the support for different keyboard layouts,
and the visual styles of window decorations. Instead of providing such policies, the
GUI server should provide a small set of flexible mechanisms that enable the imple-
mentation of these policies by de-privileged clients.

To substantiate the design space of the host GUI server, the following sections define the pre-
conditions upon which the design rests, outline the workloads to be supported, and present
the scope of the attacks to be encountered.

4.2.1 Preconditions

If deployed on top of an insecure platform, the security properties of the GUI server remain
ineffective. To enable the security measures of the GUI server to take effect, the target plat-
form must meet the following preconditions:

The host OS must be able to host multiple untrusted guest OSes capsuled in separate pro-
tection domains. It must maintain isolation between different protection domains and enable
communication between protection domains only when authorized. All physical resources
such as memory and processing time must be accountable and controllable for each protec-
tion domain. In a client-server scenario where one protection domain serves another, tem-
porary delegation of physical resources from the client to the server must be supported to
prevent clients from exhausting server-side resources.

40

4.2. PREMISES FOR DESIGNING THE HOST GUI SERVER

The boot process of the host OS must be trustworthy, for example by the means of secure
booting [13]. Once started, the base platform must provide the GUI server with reliable label-
ing information for each client such as the complete secure-boot chain of the client.

The data path from input devices to the GUI server must be protected against tampering.
An attacker who succeeds in installing a tampered input device equipped with a wiretap
renders any attempt for preventing key loggers at the software-level as done by the GUI
server ineffective. In an environment where such man-in-the-middle attacks between input
devices and the OS are considered critical, the communication between the input devices and
the OS must be secured via end-to-end encryption. Vice versa, the data path from the GUI
server to the display must be protected in accordance to the confidentiality demands of the
user. In practice, such protection is hard to achieve because even if encrypting pixel data end-
to-end between the OS and the display, an attacker may sample the electromagnetic signals
of the display as they are receivable by an antenna.

In the context designing the host GUI server, these properties are considered as precondi-
tions for achieving its security properties and, in the following, are not further regarded.

4.2.2 Workloads

The functional requirements of the host GUI server are dictated by two classes of workloads:

Seamlessly integrated legacy GUIs The client interface of the GUI server must support
the primitives required by the seamless GUI integration technique described in Chapter
3.

Low-complexity native GUI applications In addition to accommodating guest OSes and
their legacy GUIs, we strive for executing native applications that rely only on a
minimally-complex TCB provided by the secure host OS and thereby provide crucial
security functions. Following the principle of minimal complexity, the client interface
of the GUI server naturally tends to be spartan. The simplistic client interface, however,
must support native GUI applications in a way that prevents a complexity explosion
in the GUI client caused by need to bridge the functional gap between high-level and
convenient GUI elements and the raw interface of the GUI server.

4.2.3 Attacker model to defy

The GUI server is shared by multiple protection domains. While one protection domain per-
forms a security-critical function, other protection domains may execute malicious code such
as the following examples:

Trojan Horses By imitating trusted applications familiar to the user, Trojan Horses attempt
to wrest sensitive information such as banking-account credentials from the user. Al-
though Trojan Horses cannot be prevented from attempting such an attack, they can be
uncovered. The GUI server has to provide a mechanism to assist the user to defeat such
attacks by providing a reliable way to authenticate the GUI client that is presented on
screen.

Spyware In contrast to Trojan Horses that interact with the user, spyware such as key log-
gers remain passive but leak key strokes and mouse input supplied by the user to the
attacker. Spyware corresponds to wiretapping performed through software.

Information burglars and prying eyes By observing the GUI of a sensitive application, an
attacker may seize critical information from the user. For example, a small program

41

CHAPTER 4. KERNELIZING THE HOST GUI

installed by fraud may sample the user’s actions by taking screen shots in a periodic
manner and transmitting the images to the attacker.

Traitors Untrusted GUI clients that are supposed to exist isolated from each other, must
not be able to establish a hidden communication channel through the GUI server and
thereby circumvent OS policy. The host GUI server must ensure that any exchange of
information at the GUI level is properly authorized by the user and compliant to the
information-flow policy dictated by the host OS.

Denial of service Defective or malicious GUI clients may attempt to infinitely grab the
mouse pointer, open a full-screen window that captures all input events to render the
user interface inaccessible, or impose an overload situation onto the GUI server. Fur-
thermore, if allocating resources on client requests, the GUI server may put itself at the
mercy of its clients to not exhaust the available resources. Consequently, when the user
relies on high availability of GUI-based applications, malicious or defective applica-
tions become an unbearable risk that must be encountered by the GUI server through
defensive measures.

Therefore, the GUI server must be designed such that the following security properties are in
place. By default, GUI clients must be isolated from each other to prevent unwanted infor-
mation flow between them by exploiting the GUI server’s client API2. The GUI server must
enable to user to clearly identify each GUI client he is interacting with such that Trojan Horses
can be uncovered. Furthermore, the design must guarantee fairness between the GUI clients
with regard to the use of shared physical resources.

4.3 Design

This section describes my proposal of the mechanisms composing a minimal-complexity host
GUI server.

4.3.1 Client-side window handling

High complexity of today’s GUI-based applications is required to manage widgets, which are
the basic building blocks of a GUI. Widget toolkits such as Gtk and Qt offer a large variety
of widgets (e. g., cascaded menus, trees, multi-column lists) and powerful mechanisms for
widget layout. This comes at the cost of high complexity, for example the Qt toolkit consists
of more than 300,000 lines of C++ code3. The wxWidgets toolkit including the back end for
the X window system consists of 150,000 lines of C++ code.

There are window systems that implement widget handling on the server side, for example
DOpE, which exploits the global knowledge of the widget structure of all its client to perform
global optimizations of the rendering process. In contrast, the authors of EWS [67] favor a
client-side implementation of the widget toolkit to keep the complexity of the GUI server
low. As widget toolkits are not supposed to enforce security policies but are solely used for
improving the convenience of developing GUI applications, they are not mandatory as an
enabler for workload. Consequently, EWS only provides windows but no buttons, menus
and other widgets. In DOpE however, a window is implemented as a widget, which raises

2With isolation, I refer to API-based information flow but not to covert channels such as timing channels exploit-
ing memory caches. Covert-channel analysis is beyond the scope of my work.

3In addition to being a widget toolkit, Qt is a complete OS abstraction layer with support for networking, script-
ing, and database access

42

4.3. DESIGN

the question of why not to implement window handling on the client side as well. Should a
window enforce a security policy and provide means to protect availability?

J. Shapiro [67] answers the latter question with yes. Clients should not decide by them-
selves where they are placed on screen and therefore, are not able to arbitrarily cover other
clients. On the other hand, a user may expect a client to behave exactly like this and to place
its windows in a special way. It does not seem feasible to lock out those clients. The window
system has no information about what behavior a user expects from a particular client. Only
the user, not the window system, can classify misbehaving applications. To protect availabil-
ity against malicious clients, the user needs a mechanism to freeze and lock out a client at any
time. The policies of window placement, window stacking, and window decoration are no
security mechanisms and therefore should not be attributed to the server. Client-side window
handling is a key point for achieving exceptionally low complexity of the GUI server.

Note that the X window system provides the concept of a window manager, which is one
central client that manages the decorations and policies of all windows of an X session. From
the security perspective, the window manager belongs to the X server because it has unlim-
ited control over all clients. In contrast, my usage of the term “client-side window handling”
refers to managing GUI client windows by each GUI client itself.

As summarized from my practical experiments with the seamless integration of guest GUIs
in Section 3.5, the hooks in the guest GUIs to react upon window-state changes of the host
GUI had been the only problem that required tricky and unnatural changes in the guest GUI.
By deciding not to impose window policy on the client, the host GUI server does never pro-
duce such window-state changes and—as a convenient consequence for the seamless window
integration—the need for unnatural adaptations of guest GUI vanishes.

4.3.2 Buffers and views

As stated in Section 4.2.2, the support for seamlessly integrating guest GUIs into the host
GUI is considered crucial. The minimal mechanism for such support is based on two kinds
of objects in the host GUI server: buffers and views.

A buffer is a memory region that holds two-dimensional pixel data. The memory region
is provided by the client and imported into the GUI server via shared memory. The pixel
format of each buffer is equal to the pixel format of the current screen mode. Color-space
conversions are not performed by the host GUI server because converting color spaces is no
security-relevant functionality. Consequently, each client must be aware of the pixel format
provided by host GUI server.

The host GUI server has no notion of windows. A window is expected to have window
decorations and policies, for example a window can be moved by dragging the window title
with the mouse. In contrast, the host GUI server requires only a much simpler object type
called view. A view is a rectangular area on screen presenting a region of a buffer. Each
view has an arbitrary size and position on screen, defined by the client. If the view’s size on
screen is smaller than its assigned buffer, the client can define the view port on the buffer by
specifying a vertical and horizontal offset. There may exist multiple views on one and the
same buffer whereas each view can have an individual size and position on screen and can
present a different region of the buffer. Each time a client changes the content of a buffer, it
notifies the GUI server, which then updates all views that display the specified buffer region.
Analogous to conventional windows, views may overlap on screen. A client can define the
stacking position of a view by specifying an immediate neighbor in the view stack. Each view
can optionally be titled by the client by specifying a text string.

Each client owns private name spaces of the buffers and views it created. No client can
access the objects of another client. While each client manages the local stacking order of its

43

CHAPTER 4. KERNELIZING THE HOST GUI

Buffers

Views

Figure 4.1: One buffer per view. The physical frame buffer shows a composition of views. For each
view, there exists a distinct buffer that is rendered by the client.

views, the global stacking order of all views is only known to the GUI server. This fulfills our
initial security goal that one client can neither use the GUI-client API to obtain information
about other clients nor manipulate other clients.

Based on the mechanisms provided by buffers and views, there are two ways of imple-
menting a window system on top of them.

The straight-forward approach for implementing a window system using buffers and
views is to render each window into a dedicated buffer and create one view for display-
ing the buffer on screen. Figure 4.1 illustrates this approach, which basically corresponds
to the mode of operation of EWS and Apple Quartz. The obvious advantage is simplicity.
The performance of moving windows and changing the stack layout is great because no
re-rendering of windows is needed in such situations. The performance only depends on
the blitting operation of the GUI server. Resizing windows, however, implies the need for
a buffer reallocation and a new rendering process. Each window requires a buffer of the
window’s size regardless of whether the window is visible or covered by other windows.
The authors of EWS argue that modern graphics cards provide an abundance of memory.
On the other hand, graphics memory should be left available to applications instead of being
occupied by the window system. Additionally, for mobile platforms and embedded devices,
graphics memory is still considered a precious resource.

Another way to deploy the buffers-and-views mechanisms is to apply the seamless GUI
integration technique as introduced in Chapter 3. As illustrated in Figure 4.2, this approach
uses only one buffer and renders a complete windowed desktop into this buffer. The client is
a window system by itself. In the following, we use the term client window to entitle a window
on a desktop managed and rendered entirely by the client. Instead of using one view to make
the whole buffer visible on screen, we create one view for each client window. Each view is
positioned exactly to the geometry of its corresponding client window. Consequently, the set
of views reveal the part of the buffer that is occupied by the client windows. Furthermore,
we keep the stacking order of views consistent with the stacking order of the client windows
by applying all state changes of the client windows to their corresponding views, too. For
example, when the client raises a client window, it also raises the corresponding view at the

44

4.3. DESIGN

Single
Buffer

Views

Figure 4.2: Multiple views display one buffer. The client renders a complete windowed desktop into
one buffer. For each client window, there exists a view that makes the corresponding area
of the buffer visible on screen.

same time. If all state changes of client windows are consistently applied to their correspond-
ing views, the stacking layout of the views is equal to the stacking layout of the client window
system.

If multiple client window systems are present in a session, each client window system
manages its local desktop and its local stack of views. Isolation between clients is preserved
because the GUI server alone knows the global stacking order consisting of the interlocked
view stacks of all clients. Consequently, each protection domain in the system can implement
a custom window system with the desired functionality. With regard to memory consump-
tion, this technique scales well with the number of windows on screen because all windows
of one client are using one and the same buffer. On the other hand, moving windows and
changing the stacking layout require the client to refresh the affected areas on its local desk-
top. This makes the client more complex and involves costly rendering operations.

By providing buffers and views as mechanisms, the host GUI server enables the usage of
both techniques by different clients at the same time. One GUI client can implement the win-
dow handling policy for single windows by itself while another client can be a full-fledged
window system that manages a number of sub-clients and thereby provides convenience to
application programmers at the cost of increased complexity.

4.3.3 Input handling

The buffers and views mechanism presents clients on screen and lets them communicate to
the user. For enabling the secure communication in the other direction—from the user to
the client—the GUI server needs to route mouse and keyboard events to the addressed client
while hiding the user input from other clients that may execute spyware.

45

CHAPTER 4. KERNELIZING THE HOST GUI

Each client receives input events only if they refer to one of its views. Among all views,
there is one focused view that represents the keyboard input focus. Only the user selects the
focused view by mouse click. No client can define the focused view. The GUI server routes
key strokes only to the focused client—the client that owns the focused view. The focused view
does not need to be the topmost view. It may be completely covered but it still defines the
routing of input events.

Input events contain only device-level information. Key strokes are reported as consecutive
press and release events supplied with the corresponding hardware scancode. There is no
support for high-level information such as the Unicode of a character, the keyboard layout,
and the state of modifier keys because such functionality is not required to enforce security.
Analogous to the pixel format of buffers, clients must be aware of the meaning of hardware
scancodes.

With the exception that a mouse-press event selects a new focused view, mouse buttons
are handled like other keys with a defined scan code. Mouse motion and scroll events are
reported to the view under the mouse cursor, but only if this view belongs to the focused
client. This policy prevents other clients from observing mouse gestures by the user.

If the user moves the mouse while a mouse button is pressed, the GUI server reports all
mouse motion events and the finishing mouse release event to the view that received the
initial mouse-press event. This clears the way for implementing a rich variety of client-side
window-handling policies. For example, if the user enlarges a window by dragging a win-
dow resize border, the mouse cursor constantly leaves the view area of this window. Attribut-
ing the complete sequence of events including the final release event to the referred window
enables the window to catch all events that belong to the resize operation.

There are two magic keys that are exclusively in use by the GUI server and never can be
used by clients. Clients do not receive events about these keys. The Kill key is used to freeze
the current state of the view layout and to let the user pick a client to lock out from the GUI
session. It is the emergency brake for a misbehaving client. The other key that I call X-ray will
be explained in the following Section.

4.3.4 Trusted path

Buffers and views alone are not sufficient to uncover Trojan Horses. The user needs a way
to clearly identify the client with which he is interacting. In the following, I address the two
problems of what textual information should be used to describe a client and how to present
labeling information on screen while keeping the user interface flexible for a broad use.

Commodity window systems such as the X window system let clients choose the text to
label a window. This enables nice-behaving clients to be as expressive as possible. For Trojan
Horses however, this policy is an ideal opportunity to attack. In multi-level secure systems
as addressed by Trusted X [23], labeling information is required to identify the valid classi-
fication level in an unforgeable way. On a system with support for secure booting, a trusted
loader could provide the labeling information for authenticated clients. We want to support
both expressive textual information provided by the client (untrusted label) and unforgeable
labeling that represents underlying policies (trusted label). Consequently, a complete label
as handled by the GUI server is a concatenation of the trusted label and the untrusted label.
Therefore, the first part of the label contains the most sensitive information and is required to
be always visible.

Traditionally, labeling information is displayed in window titles. EWS also relies on this
way while mentioning that there may be windows without a title at all or a window title
may be covered by other windows. In [20], J. Epstein introduced techniques to maximize
the visibility of labeling information. One option is to add an additional border that contains

46

4.3. DESIGN

labeling information on all four sides of the window. While this technique is feasible for tar-
geted multi-level secure systems, it consumes precious screen space and limits applications.
Windows without the labeling border are not possible by definition.

All the presented label-placement strategies do have one problem in common: A Trojan
Horse can mimic a complete desktop by creating a window that is bigger than the whole
screen and placing the window in a way that all window controls are outside of the screen
area. Such a full-screen window could present a picture of a trusted client, including the
faked labeling information. This example illustrates the need to preserve a dedicated screen
space for presenting labeling information only. The DOpE window server uses a region at the
top of the screen for displaying information about the currently focused window. This area
cannot be covered by windows and the information is always visible. However, the top of the
screen is not in the focus of the user when he interacts with windows and he may miss to pay
attention to the labeling information. A more noticeable presentation of labeling information
is desired.

Another idea to preserve a unique capability for presenting labeling information is to cut
the color space into two parts. The currently focused client and all labeling information is
presented in full color while the brightness of all other clients is dimmed. This guides the
user’s attention to one bright spot on the screen that displays one clearly visible communica-
tion partner at a time. Dimming is implemented in the Exposé function of Mac OS X [1] and
in EWS.

I propose a combination of the reserved area and dimming techniques with a novel label
placement mechanism that I call floating labels. The GUI server dims all views that do not
belong to the focused client. All views are surrounded by a thin bright border. The focused
view is additionally highlighted by a border of a different color. In contrast to existing label
placement strategies, the GUI server analyzes the arrangement of visible views and places all
labels in a way that they are visible.

The GUI server chooses the topmost position within the view where the complete label is
visible. If the label cannot be completely displayed, it is placed in a way that the first—most
important—part of the label remains visible. Labels float over their corresponding view and
thereby cover a part of the view’s content. By placing the label at a top-most position, the
label typically overlaps with the window title of the guest window and does not interfere
with the interaction of the user with the work area of the window. All labels are drawn
with the color of their corresponding view border and feature a black outline so that they are
clearly readable on any background color. Because of the maximum brightness of the label
text, a dimmed view can never mimic or manipulate a label because it is doomed to paint
gray instead of white. When looking at the screen, the most noticeable information are the
view borders, the labels and the focused view. Similar to DOpE, a bar at the top of the screen
displays the information about the focused view.

In multi-level-security systems, the GUI server could tint unfocused views of different clas-
sification levels with different colors instead of just dimming them. For application areas
where more cautious security policies are needed, the dimming may completely blend out
the content of unfocused clients.

There are other application areas where high productivity is needed. For example, a user
wants to watch a full-color movie while programming. In this scenario, dimming would
reduce inspiration and consequently, lower his efficiency. A mechanism to enable the user to
toggle two operating modes via a magic key solves this usability issue. In Flat mode, no labels,
no borders, and no dimming is displayed. The only visible part of the GUI server is a gray
shaded bar at the top of the screen that displays the labeling information of the focused view.
The gray color of the bar signals that Flat mode is currently active. In X-ray mode, dimming,
floating labels, and the view borders are active. The bar at the top of the screen is shaded

47

CHAPTER 4. KERNELIZING THE HOST GUI

Source
GUI Client

GUI Server

Target
GUI Client

Negotiator

(1) press

(2) transport mode

(3) MIME-type list

Figure 4.3: Picking an item.

blue, signalling that X-ray mode is active. The toggling between both modes can only be
performed by the user. However, clients can request the currently active mode. If a security-
sensitive client detects Flat mode, it should ask the user to switch to X-ray mode before it
starts processing sensitive data. Passwords should never be entered in Flat mode. For daily
use at home or in productive environments, Flat mode may be default and X-ray mode will
be used occasionally to perform sensitive tasks, for example bank transactions. In contrast, in
highly sensitive environments, switching to Flat mode could be completely disabled.

4.3.5 Drag-and-drop

Drag-and-drop is a widely used paradigm to transfer data from one application to another
by dragging an item with the mouse. The GUI server does not need to provide support
for drag-and-drop between views of one client. Proprietary drag-and-drop protocols can be
used, thanks to the input routing policy described in Section 4.3.3. More challenging is the use
of drag-and-drop for establishing communication between different GUI clients and thereby
crossing protection-domain boundaries. The drag-end-drop mechanism should establish in-
formation flow only when consented by the user and only between protection domains that
are permitted to communicate according to system policy. The mere presence of the drag-
and-drop mechanism must not enable information flow between arbitrary GUI clients.

In [67], J. Shapiro proposed a drag-and-drop protocol and multi-level-security (MLS) for-
mat negotiation for EWS. The proposed solution relies on the capability concept of EROS. It
has slight shortcomings such as the lack of user feedback from the target client during the
dragging phase. This section presents a refined version of EWS’ drag-and-drop protocol.

Communication via drag-and-drop is restricted by the action of the user and global policy,
for example the permitted information flow in an MLS system. The user expresses his inten-
tion by supplying input events to the GUI server. I introduce a dedicated component—the
negotiator—for representing the global policy.

The drag-and-drop protocol consists of three phases: Picking an item at the source client,
dragging the item over the views of potential target clients, and releasing the item at the
target client.

Picking an item (Figure 4.3): When the user clicks on a view, only the client knows the
meaning of the clicked object. If the selected object is drag-able, the client tells the GUI server
about the special meaning of this mouse transaction and the mouse cursor is set to transport
mode. The client deposits a list of MIME types at the negotiator who may filter the list.

Dragging the item (Figure 4.4): While the mouse is moved in transport mode, the user
expects feedback from the potential target client. Each time the mouse cursor crosses a view

48

4.3. DESIGN

Source
GUI Client

Target
GUI Client

Negotiator

GUI Servermotion

(1) pointed
application

(2) permit

(3) floating

(4) request types

Figure 4.4: Dragging the item.

Source
GUI Client

Target
GUI Client

Negotiator

GUI Server(2) release

(1) accept

(3) drop

(4) request type(5) poll type
and submit

Figure 4.5: Releasing an item.

border, the GUI server tells the negotiator about the new pointed client (1). In turn, the GUI
server receives the policy decision about the information flow from the source to the target
client (2). If permitted and the user moves the mouse, the GUI server sends motion events to
the source client and floating events to the potential target client (3). When a potential target
client receives floating events, it can request the offered list of MIME types at the negotiator
(4). The negotiator denies the request if the client is not equal to the currently pointed client
as told by the GUI server. If the potential target client receives the list of MIME types and a
type is supported, it gives feedback to the user.

Releasing the item (Figure 4.5): When the mouse button is released, the GUI server tells
the negotiator that the user accepts the transaction (1). Subsequently, the GUI server sends a
release event to the source client (2) and a drop event to the target client (3). The target client
can now request one MIME type at the negotiator and supplies a target memory buffer via
shared memory (4). When the source client receives the release event, it polls the requested
type information at the negotiator and, in turn, transfers a source memory buffer with the
payload to the negotiator (5). Now, the negotiator can copy the payload from the source to
the target memory buffer and confirm the transaction.

The GUI server has neither to deal with type negotiation, nor does it implement the policy
of information flow, and it is not involved in payload transfer. The whole job of the GUI
server during a drag-and-drop transaction is to supply input events to both clients and the
negotiator. The implementation of the negotiator is highly platform-specific whereas the GUI
server’s mechanisms are applicable to a wide range of potential target platforms.

49

CHAPTER 4. KERNELIZING THE HOST GUI

There is one low-bit-rate communication channel from the target client to the source client.
The target client could encode data in the actual decision of what type from the MIME type
list it selects. However, the proposed protocol keeps the involved clients anonymous and the
channel is bounded by user action.

Besides drag-and-drop, the most popular mechanism to transfer information among appli-
cations is cut-and-paste. In contrast to drag-and-drop, which requires support by the GUI as
described previously, cut-and-paste can be implemented aside the GUI server. Clients can di-
rectly communicate with a clipboard component that enforces the policy of information flow
and performs format negotiation. Therefore, cut-and-paste is not further addressed in detail
but the following consideration is important to mention: By employing prevalent clipboard
semantics of broadcasting copied information to authorized clients, the flow of information
is subjected to information-flow policy between clients in general but not for each copy-paste
item separately. Once permitted, information may flow from one client to another at arbitrary
times even when the user does not explicitly signals his consent by issuing the corresponding
keyboard shortcuts. If an information-flow policy at the granularity of a single copy-paste
item is desired, the GUI server has to support the policy decision of the clipboard component
with information about copy-paste-related user events. For example, when the user issues
the copy shortcut, the GUI server notifies the clipboard that one new clipboard item is ex-
pected from the focused client. Analogously, if the user issues the paste shortcut, the GUI
server notifies the clipboard component about the user’s approval for a paste request by the
focused client.

4.3.6 Resource management

A server that allocates resources on request of a client from a fixed pool of resources is vulner-
able to denial-of-service attacks. One malicious client can exhaust server-side resources and
thereby reduce the quality of service for other clients or even make the service unavailable.

In the case of the GUI server, critical server-side resources are the heap that holds client-
specific session information and the processing time that is consumed to serve the redraw of
a client.

Dynamic resource limits enabled by heap partitioning To fully maintain the indepen-
dence of its clients with regard to memory usage, the GUI server has to account for all server-
side memory allocations performed on request of each client separately. Furthermore, the
GUI server must enforce resource-consumption limits based on the gathered accounting in-
formation. For dynamic workloads such as GUI-based applications, statically configured
resource limits are unfeasible to administer. If, however, the host OS accounts for the as-
signment of all physical resources to individual components as stated as one precondition in
Section 4.2.1, it is able to support temporary donation of memory from the client to the server.
Each time a GUI client requests a service at the GUI server, the client attaches a resource do-
nation to the request. Thus, the resource limits in the GUI server get dynamically adapted
to the donations contributed by the GUI clients. Conversely, when a GUI client finishes us-
ing the GUI server, the GUI server is expected to release the donated memory resources. To
comply with this requirement, the GUI server must store the state of each client session on a
backing-store partition that can be released independently from other client sessions. Instead
of using one heap to hold anonymous memory allocations, the server creates a heap partition
for each client and performs client-specific allocations exclusively on the corresponding heap
partition. Once a GUI client quits using the GUI server, the GUI server can destroy all local
objects belonging to the client’s session and release the complete backing store of the client’s
heap partition.

50

4.4. PRACTICAL ESTIMATION OF THE ACHIEVABLE MINIMALISM

Redraw scheduling The pivotal realization of Chapter 2 is that—given a fixed quantum
of processing time—temporal quality-of-service properties such as redraw performance, la-
tency, and throughput can uphold guarantees for any amount of workload and, thus, are
resistant against overload situations imposed by GUI clients. As a consequence, the amount
of processing time to be used by the GUI server can be a global system parameter that, effec-
tively, correlates with the temporal quality of service provided by the GUI server to all GUI
clients.

4.4 Practical estimation of the achievable minimalism

Without constraining the general applicability, I implemented the presented design to prove
its concept, observe its performance, and evaluate the source-code complexity of an actual
implementation.

For my intermediate experiment that I called Nitpicker [54], I relied on DROPS as basis
platform. Even though DROPS does not fully meet the preconditions as stated in 4.2.1, the
availability of L4Linux as VM container and the infrastructure as provided by the L4 environ-
ment provided a suitable experimentation platform.

For handling mouse and keyboard input, I used a port of the input subsystem of the
GNU/Linux kernel version 2.6 to L4/Fiasco. The graphical output is realized by using the
VESA frame buffer that is provided by the majority of modern graphics cards. The used
light-weight software graphics routines consist of functions for drawing rectangles, blitting
pixels, and rendering text using a compiled-in font. The rectangle drawing function is used
for painting the view borders in X-ray mode. The blitting function supports solid, dimmed, and
masked pixel transfer. The masked mode is used for the mouse cursor that is implemented as
a special view that stays always on top. Nitpicker performs all graphics operations directly
on the physical frame buffer without double buffering.

In addition to Hatari and the X window system (X.org), I also enabled DOpE to be seam-
lessly integrated into a Nitpicker session. This required supplementing DOpE by merely 160
lines of support code, including the replacement of DOpE’s screen and input drivers and the
propagation of window placement information to corresponding views. Figure 4.6 displays
Nitpicker in X-ray mode with the X.org and DOpE as clients. Note that the translucency ef-
fect, which is implemented by DOpE, does not display X windows. DOpE has no access to
data of the X session and therefore cannot incorporate X windows into the computation of
the translucency effect.

As stated in Section 4.1, I considered minimizing TCB complexity as first-grade design
goal. The implementation of Nitpicker consists of merely 1,500 human-written lines of C
code (LOC). This amount of code is only a fraction of EWS’s size (5,400 LOC) and an order
of magnitude smaller than Trusted X (between 12,700 and 30,000 SLOC, depending on which
TX components are counted) and X.org (> 80,000 LOC without drivers and extensions).

The prime reason for the small complexity in relation to EWS as the most comparable
GUI server is the client-side window handling. Thanks to this design decision, Nitpicker
does not need to implement the policy for rearranging windows. This simplifies the internal
logic, leads to further simplification of the drawing primitives, and enhances the flexibility
of clients, which can implement GUI paradigms such as cascaded menus without special
support from Nitpicker. For example, the scroll-able menus of WindowMaker and virtual
desktops work with X.org on Nitpicker exactly in the same way as on native X.org.

An interesting side aspect regarding source-code complexity is the considerable amount
of generated code that Nitpicker as well as EWS rely on when using IDL for describing the
client interface. Whereas the client-interface description of Nitpicker consists of merely 50

51

CHAPTER 4. KERNELIZING THE HOST GUI

Figure 4.6: Screenshot of Nitpicker.

lines of IDL code, the generated stub code comprises about 1,000 lines of C code. Comparing
this to the complexity of the human-written code highlights the critical role of compilers and
tools for secure systems. In [27], I addressed this problem by introducing an alternative RPC
mechanism that facilitates the elimination of generated stub codes from the TCB.

Intuitively, Nitpicker’s low source-code complexity and its spartan and feature-lacking
client interface suggests that the achieved low server-side complexity comes at the cost of
increased complexity of each native GUI client, which has to provide GUI widgets, graphics
functions, font handling, and user-input handling by itself. To pursue this assumption, I cre-
ated a native Nitpicker client application called Scout (Figure 4.7). Scout is an interactive tu-
torial browser that displays a multi-page hyper-linked document. The document can contain
accentuations, images, nested items, enumerations, verbatim text, and special execute-links
for starting external programs. The implementation features advanced details such as anti-
aliased fonts, a real-time-generated procedural texture that changes while scrolling, smooth
acceleration and deceleration of scrolling with automatic deceleration at the boundaries of a
page, images with alpha-channel, translucent icons that distort their background with cor-
rect refraction as computed by POV-Ray, drop-shadows, and fading icons and hyper-links on
mouse-over. The complete source code of Scout including the graphics functions, the widget
set, and the window handling comprises less than 4,000 SLOC. Scout demonstrates that a use-
ful and graphically appealing native Nitpicker client can be realized at low source-code com-
plexity. Thereby, this experiment revises the intuitive assumption that a minimal-complexity
server inherently implies high client-side complexity.

I estimated the performance impact on account of the indirection introduced by Nitpicker
by comparing the CPU demand of DOpE running as Nitpicker client against native DOpE. In
both scenarios, I stressed DOpE by displaying four animations of the size of 320x240 pixels
at a rate of 25 frames per second while permanently generating artificial redraw requests

52

4.5. INTERMEDIATE RESULT

Figure 4.7: The Scout tutorial browser implemented as native Nitpicker application.

for another DOpE window. For the tests, I used an Intel Celeron PC clocked at 900 MHz.
Nitpicker does not require additional copying of pixels. I expected DOpE on Nitpicker to
perform slightly worse than native DOpE because of two additional context switches for each
redraw operation and a computational overhead for traversing Nitpicker’s view stack. In X-
ray mode, the additional load raises up to 25 percent caused by the dimmed blitting function
that I have not optimized for performance. When switching to Flat mode, the additional load
drops to less than one percent. The observed low overhead matches my previous estimations
and supports the feasibility of Nitpicker’s design with regard to output performance.

4.5 Intermediate result

When employed on a host OS that provides isolated protection domains, Nitpicker main-
tains the isolation of its clients to prevent applications from spying on each other by exploit-
ing GUI server functionality. In contrast to today’s commodity GUI servers, which expose
user input to any application, Nitpicker protects the user from spyware by routing user in-
put to exactly one focused client at a time. Provided an OS that supports secure booting and
client authentication, Nitpicker enables the user to clearly identify each client application via
a combination of dimming and labeling techniques while preserving the high flexibility of
client GUIs. This enables the user to identify and disarm Trojan Horses. Thanks to the low
complexity and the deployed resource management, Nitpicker is robust against denial-of-
service attacks driven by client applications and can guarantee the service of sensitive client
applications with regard to their GUI. The choice of buffers and views as Nitpicker’s graph-
ical abstractions was motivated by the seamless window-integration technique described in
Chapter 3, which enables the use of existing commodity window systems and their appli-
cations alongside low-complexity security-sensitive applications. Because Nitpicker relies

53

CHAPTER 4. KERNELIZING THE HOST GUI

on server-side client representation, which I identified as prerequisite for achieving tempo-
ral quality of service, Nitpicker’s design is compatible with the periodic execution model,
redraw splitting, and redraw merging as introduced in Chapter 2. Hence, the advantages of
extremely low source-code complexity, full client isolation, the trusted-path security measure,
bounded output latency, and the compatibility to existing GUI applications are consolidated
into one GUI-server design.

From a purely functional point of view, this state of the GUI server design fulfills my initial
goals. The applicability of the solution in practice, however, depends also on non-functional
qualities, foremost the graphics throughput. Nitpicker performs graphical output via soft-
ware routines, which consume precious CPU time and bus bandwidth. Hardware-accelerated
graphical functions as provided by graphics cards operate orders of magnitude faster than
software routines and relieve the CPU from handling pixel data. Utilizing hardware accelera-
tion for a GUI server as simple as Nitpicker is almost trivial because the used graphics opera-
tions are limited to the blitting of pixel data, the drawing of boxes, and the rendering of simple
text strings. Among these operations, blitting is the most performance-critical one because it
operates on bulk pixel data. This operation is provided by most hardware-accelerating graph-
ics cards and it is very simple to utilize by software. Therefore, enhancing the GUI server to
support hardware-based blitting provides a simple yet effective optimization over purely
software-based graphics. On the other hand, hardware-accelerating the graphical operations
of the GUI server alone is not sufficient for achieving overall high-performance graphics, in
particular 3D graphics. For achieving maximum performance, also the GUI clients must be
enabled to exploit the available hardware-graphics capabilities. This raises the problem of
how to safely multiplex the physical resources provided by the graphics card between the
GUI server and its clients. Chapter 5 addresses this problem.

4.6 Related work on securing GUI servers

The GUI-server design presented in this chapter contributes solutions for three categories
of problems that are also addressed by related work: protecting and isolating GUI clients
from each other, assuring GUI integrity, and minimizing source-code complexity. This section
presents related work for these categories. It does not cover related work on preventing
resource-exhaustion-based denial-of-service attacks at the GUI level because—to the best of
my knowledge—this problem is not addressed by GUI servers other than Nitpicker.

4.6.1 Protecting and isolating GUI clients

With the creation of Trusted X [23] in 1991, J. Epstein pioneered a GUI architecture that enables
mutually untrusted applications to share one user interface. As described in Section 3.4, this
solution employs one untrusted X server for each protection domain, which—in the context
of Trusted X—corresponds to a security level. Trusted X supports inter-domain communi-
cation via copy-and-paste but it subjects these interactions to policy defined via a privileged
configuration interface (Trusted Shell). The design of Nitpicker inherits the idea of hosting
an entire GUI session as a single client from Trusted X to uphold compatibility to existing
applications. In contrast to Trusted X, which reuses the complete X server almost unmodified
in the form of untrusted single-server instances, there exist several projects such as XTSol and
XC-Security to incorporate security into the X server itself. In 2005, these efforts culminated in
the XACE [18, 69, 70] extension with the goal to provide mandatory access control at the fine
granularity of a single X client. Before executing a potentially risky operation, the X server
calls a central policy manager for permission and supplies information about the subject (the

54

4.6. RELATED WORK ON SECURING GUI SERVERS

GUI client), the object (e. g., the affected X resource), and the access type as decision criterion.
The X server executes the operation only when approved by the policy manager. Securing the
X server with XACE has two facets, the policy-enforcement mechanism and policy definition.

To let the X server enforce access control, it must be enhanced to perform policy requests
before doing critical operations by inserting hooks into the code. The starting point is an
X server without any hooks, which corresponds to a system based on a default-permit pol-
icy. The XACE concept promotes the methodology to successively add hooks to the code
and thereby make the system more prohibitive. The places for inserting hooks into the code
must be carefully chosen because policy requests require communication to the central pol-
icy manager and there is a trade-off between requesting policy decisions at a high rate and
performance. To become fully effective for isolating GUI clients, all potentially critical oper-
ations within the highly complex source code of the X server must be identified. In contrast,
Nitpicker does not perform inter-client communication and does not identify resources via
global ID name spaces. Thereby, it keeps its clients fully isolated at all times. If employing
a drag-and-drop mechanism as described in Section 4.3.5, the policy is completely encapsu-
lated in the negotiator component.

By adding policy-lookup hooks to the X server, the security problems of the X server are
translated to a policy-definition problem. XACE provides 15 different hook types to govern
the access to different resources, devices, properties, and extensions. In the X window system,
there exist numerous resources, extensions, and properties, which must be known by the
policy manager. As learned from SELinux [19], security policies for complex systems become
complex as well. Unfortunately, applications partially rely on the overly permissive default
policy, for example when using the X clipboard mechanism. Finding a restrictive policy that
still upholds application compatibility is challenging.

In contrast to systems based on a central policy, capability-based systems such as EROS [66]
implement policies in a decentralized way, employ a default-deny policy and thereby facili-
tate the principle of least privilege from the start. The EROS Window System (EWS) [67] is the
first GUI server specifically tailored for a capability-based system. EWS reduces the number
of object types provided by the GUI server to only sessions and windows. Nitpicker shares
this simplicity and the orientation toward capability-based systems with EWS. As mentioned
throughout this chapter, EWS and Nitpicker address the same problems differently. In con-
trast to Nitpicker, EWS still contains a substantial amount of built-in policy for arranging and
decorating windows. Furthermore, the authors of EWS spent no effort to accommodate ex-
isting applications because EROS does not provide execution containers for legacy software.
I consider the support for seamlessly integrating legacy window systems into a Nitpicker
session as pivotal. Nitpicker’s flexible buffer-and-view mechanism described in Section 4.3.2
supports both isolating complete instances of untrusted GUI servers as promoted by Trusted
X and fine-grained isolation of native GUI clients as facilitated by XACE and EWS.

4.6.2 Assuring GUI integrity

As explained in Section 4.3.4, protecting the integrity of displayed information on screen is
required to counter Trojan Horses. Secure window labeling as a protection measure was first
introduced for Compartmented Mode Workstations [62] to make security domains distin-
guishable on screen. In [20], J. Epstein discusses several labeling techniques employed by
Trusted X. At the beginning of the 1990’s, monochrome displays and 8-bit color displays had
been the state of the art, a dimming technique as implemented by Nitpicker was not appli-
cable. Instead, the proposed labeling mechanisms tried to ensure the visibility of labeling
information by rather obtrusively displaying labels not only at the window title but at all
sides of each window. Today, with true-color displays being pervasive, dimming techniques

55

CHAPTER 4. KERNELIZING THE HOST GUI

have become feasible. In contrast to the Exposé function for Mac OS X, which uses a dim-
ming effect for usability reasons rather than for security, Gnome’s gksudo and Windows
Vista’s User Account Control (UAC) employ dimming to support security features. Gnome’s
gksudo is a GUI-based variant for the su command, which is commonly used to execute a
process with root privileges from a unprivileged user session. To authorize the privilege
elevation, gksudo dims and freezes the current screen content and presents a password re-
quest. On Windows Vista, UAC is used to elevate user privileges and also uses a dimming
effect to highlight its security-critical functionality.

However, both solutions suffer from the following two problems. Because the credentials
prompt is triggered by the application rather than the user, it may be issued at arbitrary
times. Hence, a malicious application can attempt to spoof the security by using a full-screen
window that mimics the Credentials Prompt and thereby obtain the password. UAC tries to
hinder such attacks by presenting the user name and a customized icon. In contrast, gksudo
presents only a plain password request. Furthermore, both implementations rely on a global
modal dialog that blocks the output of all other application on screen. This modality is not
just an inconvenience but an attack vector for denial-of-service because the points in time for
UAC requests are controlled by software.

Nitpicker’s X-ray mode combines dimming and labeling such that each area on screen is
watermarked with the corresponding labeling information. In contrast to UAC and gksudo,
Nitpicker puts the user into control to decide when the GUI-integrity measure is activated.
Thereby, Nitpicker’s X-ray mode does not interrupt the user’s work flow with a global modal
dialog. Compared to UAC and gksudo, Nitpicker’s X-ray mode is hard to spoof. First, an at-
tacker would need to predict the point in time when the user activates the X-ray mode, which
is unlikely. Second, Nitpicker has a reserved screen area for presenting authentic labeling
information. The background color of this area indicates when the X-ray mode is active. Be-
cause no client can alter the reserved area, a spoofed X-ray mode would be easy to detect.
Third, because Nitpicker enforces full isolation of its clients, no client is able to acquire a
screen shot, which is a precondition to spoof the dimming effect.

An alternative concept to defy spoofing attacks without the need for GUI-integrity mea-
sures is the secure-attention-key mechanism as used by the Windows NT login screen. Rather
than asking for the user’s credentials, the login screen presents a message asking the user to
press the key combination for a system reset. A Trojan Horse implemented as a plain Win-
dows application cannot catch this key combination and would be killed. The login screen,
however, is part of the OS and handles this key combination by presenting the real login
screen. The only way to circumvent the secure-attention-key mechanism is to boot an alter-
native OS. Even though it can be circumvented, this security measure is beneficial because,
launching an attack via an alternative OS requires more effort than creating a simple Win-
dows application.

To proof the authenticity of the loaded software stack including the login screen, authenti-
cated booting can be combined with remote attestation. The remote attestation of the loaded
software stack must be issued by an external device such as a mobile phone that is trusted by
the user and features a display to present the result of the attestation process [35].

4.6.3 Minimizing complexity

Section 4.1.2 presented the crucial role of software complexity for security and constituted a
minimal-complexity TCB as design goal. The first GUI server that considers TCB complexity
as design criterion is Trusted X, which achieves a complexity as low as 12,700 SLOC.

In [46], the creators of Nemesis identified that shared servers inherently imply QoS
crosstalk, which complicates QoS scheduling. To minimize QoS crosstalk, shared servers

56

4.6. RELATED WORK ON SECURING GUI SERVERS

should generally be avoided. Only for multiplexing physical resources, the authors of Neme-
sis devise the construction of simple shared servers with low abstraction from the hardware.
Even though this argumentation was made in the context of QoS, it applies to the problem of
protecting and isolating clients. To minimize the likelihood for unwanted information flow
between clients, a shared server such as a GUI server should be as minimal as possible. The
Nemesis Window System as mentioned in Section 2.4 pursued the combination of client-side
window handling with client isolation to minimize the complexity of the GUI server and
thereby prevent QoS crosstalk.

In [67], J. Shapiro quantifies the source-code complexity of EWS with only 4,500 SLOC.
This achievement by the authors of EWS and the lessons learned from their work motivated
my work on Nitpicker, which takes the ambition to minimize complexity one step further.
Nitpicker is comprised of less than 1,500 LOC. This complexity reduction compared to EWS
is mostly attributed to the design decision for client-side window handling.

57

Chapter 5

Hardware-accelerated Graphics

Sec
urity

Compati
bilit

y
Performance

Quality of

Service

GUIGUI

In contrast to the previous chapters, which provided techniques for addressing functional
requirements posed on GUIs, maximizing performance is not a functional requirement but
an optimization. This optimization, however, is universally regarded as mandatory to enable
the GUI workload on today’s desktop computers. In effect, the importance of high graphics
performance has driven fundamental design decisions of today’s GUI servers partially by
sacrificing functional aspects that I consider as essential, in particular security.

The bias of the design of today’s GUI servers toward maximized performance rather than
security results from the historical market evolution for commodity desktop computers. Sec-
tion 5.1 presents a timeline of the major innovations in the field of hardware-accelerated
graphics that determined the feature sets provided by today’s graphics devices and exploited
by today’s GUIs.

Because these commodity GUIs exploit hardware-accelerated graphics, users generally ex-
pect to be able to fully utilize the hardware capabilities. The GUI-server implementations that
I presented in the previous chapters perform graphical operations by software executed on
the CPU. Not considering hardware-accelerated graphics seems to disqualify my proposed
design from real-world usage. This chapter addresses this concern by systematizing the exist-
ing approaches for hardware-accelerating GUIs according to the compliance to our security
goals. For reviewing the existing approaches for utilizing hardware-accelerated graphics, I
subordinate performance to the functional requirements compiled by the previous chapters.
Rather than approaching the question of how to maximize the utilization of the graphics
device, I strive for exploiting hardware capabilities for optimizing performance as far as pos-
sible but without violating my functional goals, foremost maintaining security. Section 5.2

59

CHAPTER 5. HARDWARE-ACCELERATED GRAPHICS

translates this rather abstract problem to a technical level by providing an overview over the
physical resources and the programming model of today’s graphics cards resulting in a con-
crete problem statement. Section 5.3 presents the range of designs by elaborating on existing
work.

An apparent solution is provided by the principle design of the Windows Device Driver
Architecture explained in Section 5.4. This architecture, in turn, served as the primary mo-
tivation for recent hardware improvements as presented in Section 5.5. Section 5.6 presents
how these hardware improvements qualify as apparent solutions for incorporating hardware-
accelerated graphics support into the TCB at a low complexity footprint.

5.1 Timeline of hardware-accelerated graphics

The idea of offloading graphical operations from the CPU to specialized hardware was first
introduced to the commodity desktop-computer market by the Commodore Amiga 1000
home computer in 1985. The Amiga hardware design was based on the Agnus chip that
functioned as a memory-bus arbitrator, a flexible DMA controller, and a video-output device.
The DMA controller contained a block image transfer unit (blitter), which provided func-
tions for copying pixel data between memory locations including on-screen memory, filling
memory with bit patterns, and drawing of lines. The pixel-copy capabilities were optimized
for bit-plane-organized screen modes and therefore provided functions for applying boolean
functions and bit-shift operations to the pixel payload. By using the blitter, system software
was able to relieve the CPU from long-taking pixel-copy operations and thereby to accelerate
the overall graphics output. At the time of release, the Amiga competed against the Apple
Macintosh. Thanks to the combination of the blitter with the Copper video unit, the Amiga
was able to outperform its competition in terms of graphics capabilities.

From the software perspective, the blitter is accessed via a set of memory-mapped registers.
These registers expose the entire state of the blitter including attributes for the current blitting
operation and the device status. The programming model for setting up a blitting operation is
synchronous, which means that each blitting operation must be issued by the CPU separately.
For issuing a blitting operation, the software must

1. Wait until the blitter is ready,

2. Set up the attributes of the operation, which are source and destination memory ad-
dresses, the boolean operation (incorporating source data, destination data, and bit pat-
terns from halftone registers), the bit shift to be applied to the payload, and geometry
information,

3. Start the operation by accessing a special register.

Once started, the blitter operates on the memory bus independent from the CPU. The com-
pletion of the operation is signalled by an interrupt and by a bit in a blitter register that can
be polled by the CPU.

The 2D hardware-acceleration functions as provided by the blitter were subsequently in-
troduced to other home computers and professional graphics cards.

Silicon Graphics extended the approach of hardware-accelerating graphics to the 3D do-
main by introducing the Personal Iris workstation in 1988. This workstation featured a raster
engine that enabled real-time polygonal 3D graphics. Until the mid-1990’s, Silicon Graphics
was the innovation leader for hardware-accelerated graphics in the professional workstation
domain.

60

5.1. TIMELINE OF HARDWARE-ACCELERATED GRAPHICS

At that time, the gaming industry started to incorporate 3D graphics capabilities into
consumer devices. In 1993, Atari introduced the Jaguar game console featuring hardware-
accelerated polygonal graphics, an effect processor, and a programmable object processor
for 3D calculations. The subsequently released gaming consoles of other vendors featured
hardware-accelerated 3D as a mandatory capability for enabling modern games.

In the commodity PC market, 3DFX initiated the rapid evolution of 3D-capable graphics
cards by introducing the Voodoo graphics chip in 1996. The Voodoo PCI card was an add-
on device that complemented existing VGA display adaptors and was the first low-cost PC
hardware that provided advanced graphics capabilities such as textured polygonal graphics.
Both the 2D blitting unit of the graphics card and the 3D unit of the Voodoo card had not been
used in combination but for entirely different workloads. Windowed GUIs made the bene-
fits of the 2D unit available to their applications via the Graphics Device Interface (GDI) on
Windows and respectively the X Acceleration Architecture (XAA) on the X window system.
In this architecture, the GUI server accesses the 2D unit exclusively, uses hardware functions
to speed up its internal graphics functions, and lets its GUI clients benefit from the improved
performance transparently through the client API. In contrast to the 2D unit that was indi-
rectly used by multiple concurrently executed GUI clients, the 3D unit was used by only one
application at a time in a low-resolution full-screen mode. Games as the most prominent
workload for the 3D unit facilitated direct access to the device to achieve maximum through-
put. APIs such as Glide and OpenGL had been used to ease software development and to
facilitate code re-usability but through these libraries, the 3D application directly accessed
the device.

The 2D unit and 3D unit had two characteristic differences, the sustainability of their hard-
ware interfaces and their programming model. The feature set of the 2D unit remained static
over years but 3D units were expanded by new functionality with each new device gener-
ation driven by the graphical advances of the games. As the 2D unit was an evolutionary
descendant of the blitter, its programming model retained the synchronous mode of opera-
tion that required the CPU to program device registers for each single operation. In contrast,
the programming model of the 3D unit was laid out asynchronously to enable the execution
of huge bulks of small graphical primitives without CPU intervention. The 3D unit uses di-
rect memory access (DMA) to fetch batches of commands from CPU’s memory, executes the
whole batch of commands, and triggers an interrupt after completing the command execu-
tion. To let the hardware operate in such a decoupled way from the CPU, the 3D unit has to
hold complex state information in hardware. Compared to relatively simple 2D operations,
3D operations such as polygon rendering are subject to a large number of attributes such as
the pixel-sampling method, the texture layout, the alpha values, the colors, and the scan-line-
interpolation properties. The set of attributes affecting graphics operations is called rendering
context.

Even though the 3D unit offered the functionality needed to implement a windowed GUI,
commodity GUIs at that time kept relying on the 2D unit. Compared to 2D operations, the
batched processing of 3D operations would have introduced higher latencies and the 3D out-
put resolution was not considered to be sufficient for windowed GUIs.

In 1998, NVIDIA introduced Riva TNT as the first graphics card with an integrated display
adapter, a 2D unit, and a 3D unit. Other vendors followed and extended the functionality
by introducing advanced filtering methods, bump mapping, MIP mapping, transform-and-
lighting, vertex shaders, and pixel shaders. The rapid development of the graphics-device
market led to a high functional diversity among different graphics-card devices and vendors.
With the huge increase of the power of graphics devices, 3D applications other than games
became available and facilitated the need to combine 3D acceleration with a windowed GUI.
DirectX for Windows OS and DRI for the X window system introduced time sharing of the 3D

61

CHAPTER 5. HARDWARE-ACCELERATED GRAPHICS

unit between multiple GUI clients to make 3D acceleration exploitable not only by full-screen
games but also by GUI clients. To provide the highest performance to the newest generation
of games, the driver-software stack had to provide access to the latest device features and had
to maximize the graphics throughput. Under these circumstances, subordinating security to
performance in the system design can be justified because, in contrast to 3D performance,
system security was no selling point.

Deducing from the observations that the output latencies of 3D units sufficed for the inter-
activity of games and that the resolution of 3D games was no more lower than typical GUI
resolutions, Apple Computer introduced Quartz Extreme in 2002 as the first windowed GUI
server of a commodity OS utilizing the 3D unit. The vendors of the other major commodity
GUI servers followed this path of utilizing the 3D unit for 2D window composition. Both the
Desktop Window Manager of Windows Vista and the AIGLX/Compiz extension of the X.org
X server solely rely on the 3D unit and thereby degrade the 2D unit of PC graphics cards to
a legacy. The remaining part of the document does not address the 2D unit but only the 3D
unit being called graphics processing unit (GPU).

5.2 Device overview

In a windowed GUI with multiple GUI clients and the GUI server being active at the same
time, making efficient use of the GPU for accelerating graphics corresponds to the problem of
how to efficiently share the physical device. The display architectures of today’s commodity
GUIs provide solutions for this problem. But by taking security as a premise as stated in the
introduction of this chapter, this problem becomes the challenge of how to share the physi-
cal graphics device in a secure and safe manner. Understanding this challenge requires the
following basic technical knowledge about the characteristics of graphics devices.

Today’s graphics devices provide three different resources to be multiplexed among multi-
ple GUI clients:

Local graphics memory

Graphics devices that are not integrated into the chip set of the mother board feature
local memory. Integrating memory local to the GPU maximizes the bandwidth between
the GPU and the graphics memory. Because this bandwidth is a determining factor for
the rendering throughput, the bus between GPU and local graphics memory is opti-
mized for GPU access patterns.

On typical graphics devices, the operands such as source textures and the results of
GPU operations are restricted to be located in local graphics memory. In contrast to
the bandwidth between GPU and local graphics memory, the bandwidth between the
CPU and the local graphics memory is orders of magnitude lower because such data
transfers rely on the peripheral bus of the CPU. To efficiently use the GPU, accesses by
the CPU to the local graphics memory must be avoided.

Graphics devices that are integrated into the chip set of the motherboard utilize host
memory as local graphics memory. Although this architecture avoids the use of a slow
peripheral bus between GPU, CPU, and graphics memory, the achievable bandwidth
between GPU and the graphics memory is limited by the capacities of the host-memory
controller.

Frame buffer

The frame buffer is the portion of the graphics memory that corresponds to the image
displayed on screen.

62

5.3. DESIGN SPACE FOR MULTIPLEXING GRAPHICS HARDWARE

GPU

The GPU is the graphics processor that executes graphical primitives. It operates on the
graphics memory but also supports the fetching of data via DMA from host memory,
for example for loading a source texture into the local graphics memory prior to using
the texture for a graphics operation.

In the following, programs that utilize these resources are called GPU clients. With this no-
tion, both the GUI server that uses the GPU for window redrawing and GUI clients that use
the GPU for rendering operations are GPU clients.

Sharing the physical resources of the graphics device involves the following security risks.
If one GPU client is able to observe state of another GPU client without authorization, for ex-
ample by reading from arbitrary graphics-memory locations, the confidentiality of processed
information cannot be assured, thereby breaking isolation between GPU clients and enabling
the operation of spyware. Analogously, a GPU client that can arbitrarily modify the state of
other GPU clients may violate the integrity of the processed information and thereby intro-
duce attack vectors for Trojan Horses. If the time sharing of the GPU and the allocation of
graphics memory is not subjected to policy such as quotas, one GPU client may exhaust the
available resources and put the availability of the graphics subsystem at risk. As observed
by my personal experience and supported by [25], commodity graphics devices are prone to
robustness problems when used in a wrong way. Wrong usage may result in an inconsistent
state or a lock-up of the device making the GUI unavailable.

The majority of commodity graphics devices do not provide hardware support to avoid
such problems. In contrast to the CPU’s memory that can be safely used by multiple un-
trusted programs via the memory-management unit (MMU), there is no MMU for graphics
memory. Each program with direct access to the GPU is able to issue GPU operations that
operate on arbitrary graphics-memory locations and thereby potentially violate the integrity,
confidentiality, and availability of the entire GUI.

The constraints of graphics devices on the one hand and the security requirements on the
other hand implicate the fundamental technical challenges of how to partition graphics mem-
ory in such a way that isolation between GPU clients is maintained and how to temporally
multiplex the GPU between GPU clients such that liveliness of each GPU client is guaranteed.
By introducing the endeavour of minimizing the complexity of application-specific TCB in
Section 4.1.2 as primary non-functional design guideline, the code complexity on account of
the performance optimization through GPU usage has to stay in relation to the purely func-
tional parts of the GUI-related TCB.

5.3 Design space for multiplexing graphics hardware

This section discusses two approaches that span the design space for multiplexing a graphics
device, API-level multiplexing and device-level multiplexing. By revisiting existing imple-
mentations, the security-related limitations of both approaches become apparent.

5.3.1 API-level resource multiplexing

As mentioned in Section 5.1, when 2D graphics acceleration was introduced, system software
made the performance benefit available to applications in a completely transparent way via a
system API. The design of the 2D-hardware features was driven by existing APIs such as Win-
dows’ GDI and the X protocol. From the opposite perspective, an API provides an abstract
and convenient interface to the hardware facilities and hides device diversity. An API with

63

CHAPTER 5. HARDWARE-ACCELERATED GRAPHICS

support for client contexts (e. g., a device context for GDI, or a virtual workstation for GEM)
implicitly facilitates the use of hardware acceleration by multiple clients through the indirec-
tion of the software stack implementing the API. API-based multiplexing worked well for
2D acceleration because the hardware facilities had been simple and only moderately diverse
among different devices and vendors.

In contrast, 3D hardware is highly diverse with regard to implemented features and initial
3D APIs such as Glide lacked support for client contexts. Therefore, these APIs did not fa-
cilitate device multiplexing at the API level. Approaching API-level multiplexing of the 3D
hardware raises the question of which API to choose as a basis for the GUI and all graphical
applications. As APIs try to provide an abstraction from the hardware, not all hardware fea-
tures may be sufficiently exposed to the programmer. For example, NVIDIA introduced pixel
shaders into the GeForce 3 graphics devices in the year 2001 but the OpenGL API provided
full support for this feature not before 2006 when revision 2.1 was released. The other way,
if an API provides a superset of the functionality supported by the device, software fallbacks
are required. On account of the high diversity of devices, a perfect correspondence between a
generic high-level API and a specific device is unlikely. Despite of that inherent compromise,
with Direct3D and OpenGL, there exist established APIs that are regarded as both universally
usable and well-supported by graphics hardware.

The programming model of OpenGL as the de-facto industry standard is a state machine
that holds a set of attributes forming the rendering context. OpenGL commands as issued by
an application programmer fall into one of three categories:

• Configuration of the rendering context by assigning rendering attributes such as the
color and lighting,

• Execution of a graphical primitive according by the current state of the rendering con-
text, or

• Special control functions such as SwapBuffers that are independent of the rendering
context.

For the X window system, there exists GLX as an extension of the X protocol. GLX is a sim-
ple wire protocol of API-level OpenGL commands. The X server holds the rendering context
for each GLX client and exposes the complete OpenGL API as client interface. Internally,
the X server serializes the GLX streams received from its clients and transforms the result-
ing sequence of OpenGL-commands to the device level. Because the X server has a global
view about the state of all GLX clients, it is able to implement the switching of rendering
contexts and thereby time-multiplexes the graphics device. By using a stream representation
of OpenGL commands, GLX preserves the network transparency of the X window system.

The usage of streamed OpenGL commands was taken further by the WireGL project [17].
WireGL optimized the stream protocol for minimizing network bandwidth. Instead of hold-
ing the rendering contexts only in the server, WireGL lets each client track state changes of
its rendering context and lazily send updates to the server only when needed. Furthermore,
WireGL handles the rendering context not just as a flat set of attributes but it represents all at-
tributes in a hierarchy. The hierarchy alleviates the costs of calculating the difference between
rendering contexts and thereby enables efficient lazy updating of the rendering context at the
server. Furthermore, this technique facilitates the use of soft context switching inside the
server. Instead of saving and restoring the rendering contexts at device level, the server can
efficiently apply only the differences between the old and new context at the API level. As
presented in [17], soft context switching is able to improve context switching times by orders
of magnitude and it does not require any hardware support.

64

5.3. DESIGN SPACE FOR MULTIPLEXING GRAPHICS HARDWARE

The Chromium project [44] conducted the multiplexing of rendering hardware as one as-
pect of distributing OpenGL workload across networked cluster nodes. Based on the expe-
riences made with WireGL, this work further generalized the use of streamed sequences of
OpenGL commands. Each node in the cluster receives one or more incoming OpenGL com-
mand streams, applies stream transformations, and emits outgoing streams. By using this ter-
minology, the execution of rendering commands is regarded as a stream transformation, for
example a node may receive OpenGL geometry commands (e. g., glVertex3d) as input, ex-
ecute rendering commands, and produce OpenGL raster commands (e. g., glDrawPixels)
as output of the transformation. A rendering node that receives multiple OpenGL streams
must apply a serializing transformation to the incoming streams to produce one stream of
commands to be passed to the rendering hardware. Consequently, such a serializing portion
of a rendering node multiplexes the device at the API-level.

VMGL and the Blink project [36] applied the streaming of API-level commands to the do-
main of virtual machines and addressed the problem of utilizing graphics hardware by multi-
ple untrusted guest OSes hosted on the same machine. Blink relies on one complete OpenGL
protocol stack contained in Xen’s [15] trusted domain called Dom0. On top of the OpenGL
stack, a display manager provides a custom designed command streaming interface to be ac-
cessed by applications running within different unprivileged virtual machines. A subset of
Blink’s command streaming interface resembles the OpenGL API, which is made available to
client applications via a custom libGL shared library installed in the guest OSes. This way,
Blink facilitates backward-compatibility to OpenGL. With a desktop workload on Xen, the
primary constraint is not the bandwidth of the virtual network between virtual machines but
the context-switching costs between virtual machines and the response latency with respect
to the user activity. Blink facilitates the reduction of the number of context switches between
virtual machines by enabling clients to offload parts of their program logic (e. g., mouse-focus
highlighting) into server-side stored procedures that are executed locally in the server with-
out involving the client. Of the mentioned projects, Blink is the solution that is closest to the
workload I am addressing.

From a practical point of view, API-level multiplexing as implemented by Blink is economic
with regard to engineering costs because it reuses existing 3D infrastructure such as device
drivers for the GPU, the OpenGL protocol stack, and the display capabilities of the host OS,
for example the X window system or the Linux frame buffer. Through API-level multiplexing,
Blink is able to provide isolation and safety on a conceptual level by relying on the premise
that the TCB complexity of the 3D protocol stack is not a problem. As I discussed in Section
4.1.2, however, I object that this premise is valid.

5.3.2 Device-level resource multiplexing

When performing API-level resource multiplexing, the API protocol stack must be trusted.
It is complex but at the same time it is shared by all GPU clients. The preservation of se-
curity depends on how strongly the protocol stack enforces the isolation of its clients and
its robustness against resource exhaustion. Because an API such as OpenGL is a general-
ized abstraction from hardware, it imposes constraints to the exploitation of special device
features. Furthermore, a resource-multiplexing protocol stack is an indirection between the
device and a GPU client and, therefore, it implicates overhead, for example caused by the con-
text switches between the GPU server and a GPU client when processing consecutive batches
of commands. In contrast, a program with direct access to the device is not subjected to the
constraints of an API with regard to the use of hardware features.

Device-level multiplexing aims at preserving the richness of devices for multiple GPU
clients and, at the same time, maximizing the performance by avoiding the indirection be-

65

CHAPTER 5. HARDWARE-ACCELERATED GRAPHICS

tween the GPU client and the hardware. The Direct-Rendering Infrastructure (DRI) project
[55] is an implementation of device-level multiplexing on UNIX. In this architecture, the OS
kernel time shares the access to the physical graphics device between all GPU clients in a
round-robin fashion. Furthermore, the OS kernel manages the allocation of graphics mem-
ory and arbitrates the supply of commands to the GPU. Each GPU client brings along driver
code and an API protocol stack of its choice, for example the Mesa library stack including a
back-end driver for the installed graphics card. DRI assumes that applications behave coop-
eratively and use the device in a compliant way. This assumption is reflected by the design
decision of making the complete device including the entire graphics memory, frame buffer,
and all control registers accessible to each GPU client. As described in [26], the asynchronous
execution of GPU commands by the graphics card makes explicit synchronization of soft-
ware rendering by GPU clients inevitable. For this synchronization, DRI relies on a global
lock that is managed cooperatively by all GPU clients. DRI provides special measures against
deadlocks caused by a crashing application that is the current lock holder but there are no
measures against applications that misbehave maliciously. Combined, these design proper-
ties subvert the security goals expressed in Chapter 4. Because spatial partitioning of graphics
memory and the frame-buffer in particular is not enforced, the integrity and confidentiality of
displayed information cannot be guaranteed. Because each GPU client is able to monopolize
access to the graphics device by grabbing the global lock or by exhausting graphics memory
by unrestricted allocations, the liveliness of GPU clients is put at risk. DRI puts the availabil-
ity of the host GUI at the mercy of all GPU clients because the X window system itself relies
on DRI as one member among all GPU clients.

DRI addresses security merely by the means of access control. The access right to DRI as
a whole via the /dev/dri device can be granted or denied per process. Once a process is
permitted to access /dev/dri, there is no restriction of how the device can be used [25].
The majority of commodity Linux distributions facilitate the assignment of the access right to
/dev/dri on a per-user basis by introducing a UNIX group for DRI and only assigning se-
lected users to the DRI group. Because most users desire the benefit of hardware-accelerated
3D graphics, this access right is typically granted to all user applications. Therefore, the GUI-
related TCB includes all applications executed by the end user.

In [53], Frank Mehnert secured network-device and IDE-device programming by untrusted
driver code by faithful device virtualization. The work was based on the observation that only
a small portion of the device interface, namely the DMA engine, is security critical whereas
the access to the major parts of the device interface by untrusted clients imposes no risk. A
small trusted mediator was introduced as an indirection between the raw device and the un-
trusted driver code. To its untrusted client, the mediator provides a virtual device interface
with a register layout that corresponds exactly to the physical device interface. The mediator
installs itself as the page-fault handler for the security-critical portion of the virtual MMIO
registers. For uncritical virtual MMIO registers, it creates a direct mapping of physical to
virtual MMIO registers. This way, the mediator intercepts all critical hardware accesses, val-
idates DMA requests, and performs the actual programing of the physical DMA registers.
This concept was applied for each of the Digital DS2114x Tulip fast-ethernet device, the In-
tel PRO/1000 gigabit ethernet device, and an IDE controller. For those devices, the required
code complexity of the mediator turned out to be lower than 1,000 SLOC, which is factor 5-10
smaller than the reused untrusted driver code taken from the Linux kernel version 2.2.26.

In contrast to the investigated network and IDE devices, commodity graphics devices such
as ATI’s Radeon device family usually have security-critical registers and uncritical registers
co-located at the same physical page preventing a selected interception of only critical de-
vice accesses. Consequently, a large subset of the uncritical registers must be intercepted to

66

5.4. GPU COMMAND-STREAM MULTIPLEXING

Protocol Stack

Application

Graphics
 Device GPU

DM
A

Command
Ring

Buffer

Command
Batch

Buffers

Texture

Target Surface

Texture

Vertex buffer

Physical
Graphics Memory

ApertureIn
se

rt

Graphics API

Device-specific Back End

Figure 5.1: A single application directly operates on the graphics device by using the GPU’s
command-stream interface.

capture the critical accesses. Trapping uncritical registers such as drawing-attribute registers
does not contribute to security but spoils the performance.

On the one hand, faithful graphics-device virtualization at register level seems difficult and
inefficient. On the other hand, the device-register interface is not used for modern 3D work-
loads. Instead, GPUs are programmed via batches of higher-level commands. The Windows
Device Driver Model introduced with Windows Vista exercises GPU multiplexing based on
the abstraction level of GPU commands streams. The following section explains its principle
design, which ultimately motivated recent improvements of graphics devices outlined in the
subsequent Section 5.5.

5.4 GPU command-stream multiplexing

Figure 5.1 illustrates the interaction between software and hardware for an application that
uses the graphics device directly. The application uses the programming model of an abstract
graphics API such as Direct3D or OpenGL. The protocol stack translates the graphics API
calls to device-specific commands. To perform this translation, the protocol stack has to have
the knowledge about both the semantics of the graphics API and the capabilities of the graph-
ics device. If a particular API feature is not supported by the device, the protocol stack has
to provide software-based fall-back functions. Hence, graphics protocol stacks are complex.
The back end of the protocol stack emits batches of device-specific GPU commands, which
are made available to the GPU via DMA. Figure 5.1 presents the mechanism as provided
by Intel’s Graphics Media Accelerator (GMA) chip sets. The driver software sets up a com-

67

CHAPTER 5. HARDWARE-ACCELERATED GRAPHICS

mand ring buffer in DMA-capable memory and signals new GPU commands by updating the
ring buffer’s tail-pointer register. During command execution, the GPU maintains the ring
buffer’s head pointer accordingly such that both software and hardware can synchronize. In
a typical mode of operation, subsequent graphics commands are not immediately enqueued
into the ring buffer but stored in batch buffers. If a batch of commands is completely assem-
bled by the protocol stack, the driver submits the whole batch by inserting a special command
referencing the batch buffer into the command ring buffer. GPU commands as contained in
batch buffers fall into the following categories:

• Graphics primitives

• Setup of rendering attributes such as pixel formats, vertex formats, filtering methods,
colors, and shader programs

• Setup functions for source textures, vertex buffers, and the current target surface in-
cluding the definition of the clipping area

• Synchronization and control-flow commands

Commands of the latter two categories contain references to the physical graphics memory.
If sharing the device between multiple applications in a DRI fashion, the physical graphics
memory is shared by these applications. Therefore, GPU commands referencing physical
graphics memory are critical for maintaining the isolation between applications. In contrast,
GPU commands of the first two categories are uncritical because they contain no direct refer-
ences to physical memory locations.

The majority of commands produced by typical workloads are graphics primitives and
attribute definitions. Compared to the occurrence of these uncritical operations, critical com-
mands are sparse. The Windows Device Driver Model described in the following section
exploits these characteristics for virtualizing graphics memory in software.

5.4.1 Windows Device Driver Model

The Windows Device Driver Model (WDDM) [11, 10, 59] removes the high-complexity graph-
ics protocol stack from the TCB and maintains the isolation of GPU clients by virtualizing the
graphics memory at GPU command level. As shown in Figure 5.2, the graphics protocol
stack is split into a trusted kernel-mode driver1 shared by all GPU clients and an untrusted
user-mode driver linked to each GPU client. Each UMD produces GPU commands as if pro-
gramming the device directly except for commands that refer to graphics memory locations.
Instead of using physical addresses for these commands, the UMD inserts virtual addresses
for memory objects as obtained from the KMD’s memory manager. Each time when a GPU
client submits a batch of GPU commands to the KMD, the batch has to be filtered for poten-
tially critical commands. An example for such a critical command is STORE_DWORD_IMM as
provided by the Intel GMA chip sets. This command issues a DMA write operation to an
arbitrary physical address on systems without IOMMU support. To maintain security and
robustness, such commands must be detected. After having successfully validated each com-
mand, the KMD schedules the batch by inserting its reference into the command ring buffer
and replacing all embedded virtual graphics memory locations by the corresponding phys-
ical addresses. The mapping between virtual and physical addresses is maintained by the
KMD in software.

1 Despite of its name, the kernel-mode driver does not need to be part of the OS kernel. On a microkernel-based
OS, the KMD would be realized as user-level component with no enhanced privileges other than direct access
to the GPU.

68

5.4. GPU COMMAND-STREAM MULTIPLEXING

Scheduler

UMD

Untrusted Application

Graphics
 Device GPU

DM
A

Texture

Target Surface

Texture

Vertex buffer

Physical
Graphics Memory

Aperture

Graphics API

Untrusted Application
Graphics API

Validator

Validator
 KMD

UMD

virt to physVirtMM

Figure 5.2: Windows Device Driver Model

69

CHAPTER 5. HARDWARE-ACCELERATED GRAPHICS

With Windows Vista’s Desktop Window Manager (DWM) being a Direct3D application,
the problem of securely multiplexing the GPU among multiple GPU clients becomes inherent.
The original WDDM architecture resolves this problem on the GPU command stream level by
virtualizing graphics memory and performing GPU scheduling in software. Thereby, WDDM
reduces the TCB for maintaining GPU client isolation to the KMD. The UMD as the major
contributor to the complexity of the graphics protocol stack can be regarded as untrusted.
In contrast to the UMD, which may be frequently enhanced by new graphics features, the
KMD’s functionality remains rather fixed. By decoupling UMD and KMD, the UMD can be
updated at runtime similar to other user-level libraries. Furthermore, different UMDs can be
concurrently active for different applications.

The drawbacks of multiplexing GPU command streams solely by software are the costs for
scanning GPU command streams submitted by the untrusted GPU clients and the manual
address translation. For example, GPU commands as present in Intel’s GMA chip sets have
variable lengths and multiple opcode fields. For parsing streams of such commands and to
protect the system from critical operations, the KMD requires intimate knowledge about the
GPU commands potentially issued by UMDs. To overcome these drawbacks, Microsoft facil-
itated hardware improvements for graphics devices by introducing virtual graphics memory
and hardware contexts as mandatory features for devices compliant to DirectX version 10.

5.5 Hardware-supported GPU-context management

With the GMA X3000 chip set released in 2006, Intel introduced the security-related hard-
ware improvements demanded by DirectX version 10. This chip facilitates the management
of multiple rendering contexts in a similar way to how Intel’s Virtualization Technology (TV)
[9] CPU extension supports the management of virtual-machine state. Analogously to how
VT maintains CPU state in an opaque memory area called virtual-machine control structure
(VMCS), the GPU is able to save the current rendering context to an opaque memory area
and restore a new context from memory respectively. On the GMA X3000 chip, the graphics
driver steers the switching of rendering contexts by inserting MI_SET_CONTEXT instructions
into the GPU command stream to select the current rendering context. Only one context can
be active at a time. In addition to the support of temporal isolation between GPU clients
via hardware-based context switching, the chip set supports spatial isolation via two levels
of memory-address translation. Inherited from the previous chip-set generation, a global
graphics-translation table (GTT) describes the composition of the graphics-memory aperture
from physical memory pages. The GTT is a flat table of GTT entries. Each entry describes the
4KB graphics-memory aperture page corresponding to its table index and it holds a reference
to the assigned physical memory page. With the GMA X3000, Intel introduced an additional
address-mapping via the per-process GTT (PPGTT). If enabled, the PPGTT describes the vir-
tual graphics memory as visible by the current context performing GPU operations. Each
PPGTT entry refers to a page in the GTT address space. In contrast to the GTT, which in-
cludes the globally needed mapping of the physical frame buffer and the DMA buffers for
GPU commands, the PPGTT can be tailored to be more restrictive, including only the mem-
ory regions used by the rendering operations of the current context. If the GPU accesses an
invalid memory address, the device signals the access fault via an interrupt at the CPU and
halts the GPU. Driver software can then resolve the fault by modifying the GTT and PPGTT
accordingly or by taking a scheduling decision. With the support of rendering-context man-
agement and per-process virtual graphics memory in hardware, the GMA X3000 chip set
enables the execution of untrusted user-mode device drivers without the need for parsing
GPU commands by the KMD software. This hardware improvement maintains native ren-

70

5.6. TCB COMPLEXITY ON ACCOUNT OF HARDWARE-ACCELERATED GRAPHICS

dering performance and frees the KMD from knowledge about complex rendering operations
offered by the GPU.

The drawback of Intel’s GMA X3000 solution is bad scalability with regard to the num-
ber of rendering contexts. Because graphics page-fault resolution is done in a synchronous
way, the GPU is halted until the KMD has resolved the fault. If the fault resolution in-
volves long-taking operations, the GPU utilization drops. Analogously to VT’s vmsave and
vmrestore operations, the mechanism provided by the MI_SET_CONTEXT GPU command
copies large state and therefore, it becomes costly when used for fine-grained scheduling. Fur-
thermore, the programming model requires the driver to explicitly insert preemption points
into the command stream or to apply scheduling decisions at the granularity of complete
batch buffers, which implies potentially high scheduling latencies.

WDDM version 2.1 addresses these drawbacks by facilitating further hardware improve-
ments. In November 2007, AMD introduced its first graphics devices based on the RV670
chip compliant to WDDM 2.1. The major improvement of this device generation is the execu-
tion of muliple GPU contexts in parallel. If one GPU context faults, the other contexts remain
active and can proceed with rendering operations. Managing multiple contexts locally at the
graphics chip effectively eliminates the costs for context-switching. Furthermore, the latency
for switching contexts is minimized by making the GPU processing interruptible at the gran-
ularity of a single pixel. This way, long-taking fragment shaders as employed by increasingly
popular non-graphical GPU clients [2] do not impose unbounded delays on concurrently ac-
tive graphical GPU clients.

5.6 TCB complexity on account of hardware-accelerated
graphics

The recent introduction of MMU mechanisms into the current generation of graphics de-
vices apparently resolves the GPU multiplexing problem. Thanks to these hardware im-
provements, enabling hardware-accelerated graphics does not inherently imply that highly
complex driver code is contained in the TCB. By utilizing hardware-supported virtual graph-
ics memory and context management, the trusted part of the graphics protocol stack can be
reduced to the GPU scheduler, the GPU page-fault handler, and the memory manager. It does
not need to parse GPU commands because GPU command streams as produced by untrusted
user-mode drivers contain only virtual addresses. For ensuring the isolation between GPU
clients, there is no knowledge about the highly complex graphical primitives needed and
thanks to the fine-grained interruptibility of the GPU, the KMD is not required to validate
fragment-shader programs to maintain bounded scheduling latencies.

Now that documentation for current-generation GPUs (AMD’s R6xx series and Intel’s
GMA X3000) has become publicly available, a practical evaluation of the achievable TCB
minimalism becomes feasible and poses an interesting challenge for future work.

My practical experiences with programming various graphics devices (Matrox, ATI Rage,
ATI Radeon, Intel GMA) and existing source code of open-source drivers already allow for
the estimation that an achievable low complexity of the trusted driver portion lies in the order
of 5,000 to 10,000 SLOC.

71

Chapter 6

Conclusion

Security

Compatibility Performance

Quality of
 Service

GUIGUI

When I started my work on GUIs, I identified the four major design challenges quality of
service, compatibility, security, and high performance, which seemed to contradict with each
other. With my work, I strived for solving this conflict using a combination of existing and
novel techniques.

Moving the client representation to the GUI server makes the costs for redrawing jobs pre-
dictable and enables the application of real-time scheduling. By exploiting the special char-
acteristics of redraw jobs, optimization techniques such as lazy updating the client state on
screen and redraw dropping become feasible. These optimizations ultimately lead to a de-
sign that considers the GUI quality of service as a global system parameter and eliminates the
need for temporal client models. The spatial partitioning of the frame buffer as performed
by my proposed design maintains full isolation of GUI clients from each other and thereby
protects the confidentiality of the presented information. My solution for the unforgeable
watermarking of screen regions enables the user to counter attacks by Trojan Horses. Com-
bined with secure routing of user input, the GUI server ensures a bidirectional trusted path
between each single application and the user. To prevent resource-exhaustion-based denial-
of-service attacks, I combined resource donation with a novel heap-partitioning technique.
With the help of recent hardware improvements, my design becomes able to benefit from
hardware-accelerated graphics without compromising security.

I validated my design propositions with extensive experiments. My DOpE GUI server is
the first GUI server modelled as a periodic real-time process. Thereby, it is able to provide
quality of service guarantees and it prevents overload situations by design. My most remark-
able implementation work is Nitpicker, which is a GUI server that accommodates complete
existing windowing systems and low-complexity security-sensitive applications side by side.

73

CHAPTER 6. CONCLUSION

The most distinctive property of Nitpicker is its source-code complexity of less than 1,500
lines of code, which is only a fraction of previously existing GUI servers.

As a composition, the techniques presented in this document overcome the apparent con-
flict between the different goals posed on GUIs. Supporting quality of service, accommo-
dating the existing wealth of GUI-based applications, and achieving high performance while
maintaining security on the GUI level are not contradicting each other.

Outlook

This thesis does not mark the end of my work in the field of secure GUIs. Instead, I regard
it as the foundation of my upcoming activities [3] of pairing the presented techniques with
my OS architectural work [31]. By combining both, I strive to prove that a TCB complexity
for graphical applications in an OS environment with support for general-purpose desktop
workloads can be in the order of tens of thousands rather than millions of lines of code, which
is the state of the art.

74

Bibliography

[1] Apple Mac OS X website. Apple Inc., URL:
http://www.apple.com/macosx/. 47

[2] General-Purpose computation on GPUs website. URL:
http://www.gpgpu.org. 71

[3] Genode Labs website. URL:
http://www.genode-labs.com. 74

[4] Hatari website. URL:
http://hatari.sourceforge.net. 31

[5] SLOCCount website. URL: http://www.dwheeler.com/sloccount/. 21

[6] Tcl/Tk website. URL:
http://www.tcl.tk. 21

[7] VMware website. URL: http://www.vmware.com. 26, 35

[8] Wine website. URL:
http://www.winehq.org. 26

[9] Intel Vanderpool Technology for IA32 Processors (VT-x). Intel Corporation Order Num-
ber C97063-001, January 2005. 40, 70

[10] ATI Catalyst Graphics Drivers and WDDM whitepaper. ATI Technologies Inc., URL:
http://ati.amd.com/products/wp/atiwddmwhitepaperfinalv38.pdf,
2006. 68

[11] MSDN Library: Windows Vista Display Driver Model introduction. Microsoft Corpora-
tion, URL:
http://msdn2.microsoft.com/en-us/library/aa480220.aspx, July 2006. 4,
68

[12] L. Abeni and G. Buttazzo. Integrating Multimedia Applications in hard Real-time Sys-
tems, December 1998. 23

[13] W. Arbaugh, D. Farber, and J. Smith. A Secure and Reliable Bootstrap Architecture. In
Proceedings of the 1997 IEEE Symposium on Security and Privacy, pages 65–71., May
1997. 41

[14] Paul Barham. Devices in a Multi-Service Operating System. July 1996. 23

75

http://www.dwheeler.com/sloccount/
http://www.vmware.com

Bibliography

[15] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In
Proceedings of the 19th ACM Symposium on Operating System Principles (SOSP), pages 164–
177. Bolton Landing, NY, October 2003. 26, 65

[16] Paul T. Barham, Mark Hayter, Derek McAuley, and I. Pratt. Devices on the Desk Area
Network. IEEE Journal of Selected Areas in Communications, 13(4):722–732, 1995. 23

[17] Ian Buck, Greg Humphreys, and Pat Hanrahan. Tracking Graphics State for Networked
Rendering. In Proceedings of SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 87–96, August 2000. 64

[18] Alan Coopersmith. Open Source Multi-level Security in X. Slides from talk at the Desk-
top Developers’ Conference, URL:
http://people.freedesktop.org/ alanc/ddc-2006.pdf, 2006. 38, 54

[19] Tresys Technology David Caplan. SELinux Policy Analysis - Concepts and Techniques.
SELinux Symposium, 2005. 55

[20] Jeremy Epstein. A prototype for Trusted X labeling policies. In Proceedings of the Sixth
Annual Computer Security Applications Conference. Tucson, AZ, USA, December 1990. A
discussion of visible labeling issues, not specific to X, but applicable to any windowing
environment. 46, 55

[21] Jeremy Epstein. A High-Performance Hardware-Based High Assurance Trusted Win-
dowing System. In Proceedings of the 19th National Information Systems Security Conference,
October 1996. 22, 34

[22] Jeremy Epstein, John M c Hugh, Rita Pascale, Hilarie Orman, Glenn Benson, Charles
Martin, Ann Marmor-Squires, Bonnie Danner, and Martha Branstad. A Prototype B3
Trusted X Window System. In Proceedings of the 7th Annual Computer Security Applications
Conference (ACSAC), December 1991. 34

[23] Jeremy Epstein, John McHugh, Hilarie Orman, Rita Pascale, Ann Marmor-Squires, and
Bonnie Danner et al. A high assurance window system prototype. 46, 54

[24] Jeremy Epstein and Marvin Shugerman. A Trusted X Window System server for Trusted
mach. In Proceedings of the USENIX Mach Conference, Burlington, VT, USA, October 1990.
34

[25] Rickard E. Faith and Kevin E. Martin. A Security Analysis of the Direct Rendering In-
frastructure. Cedar Park, Texas: Precision Insight Inc., 1999. 63, 66

[26] Rickard E. Faith, Jens Owe, and Kevin E. Martin. Hardware Locking for the Direct Ren-
dering Infrastructure. Cedar Park, Texas: Precision Insight Inc., 1999. 66

[27] Norman Feske. A Case Study on the Cost and Benefit of Dynamic RPC Marshalling
for Low-level System Components. SIGOPS OSR Special Issue on Secure Small-Kernel
Systems, July 2006. 52

[28] Norman Feske and Hermann Härtig. Demonstration of DOpE — a Window Server for
Real-Time and Embedded Systems. In 24th IEEE Real-Time Systems Symposium (RTSS),
pages 74–77. Cancun, Mexico, December 2003. 14

76

Bibliography

[29] Norman Feske and Hermann Härtig. DOpE — a Window Server for Real-Time and
Embedded Systems. Technical Report TUD-FI03-10-September-2003, TU Dresden, 2003.
14

[30] Norman Feske and Christian Helmuth. Overlay window management: User interaction
with multiple security domains. Technical Report TUD-FI04-02-März-2004, TU Dresden,
2004. 34

[31] Norman Feske and Christian Helmuth. Design of the Bastei OS architecture, subse-
quently called Genode OS Framework. Technical Report TUD-FI06-07-Dezember-2006,
TU Dresden, 2006. 6, 74

[32] Decklin Foster. Aewm website. URL:
http://www.red-bean.com/~decklin/aewm/. 30

[33] X.Org Foundation. X.org website. URL:
http://www.x.org. 9, 26, 29

[34] Thomas Friebel. Portierung der libSDL auf DROPS / DOpE. Großer Beleg, TU Dresden,
URL:
http://os.inf.tu-dresden.de/papers_ps/friebel-beleg.pdf, 2005. 26, 31

[35] Scott Garriss, Ramón Cáceres, Stefan Berger, Reiner Sailer, Leendert van Doorn, and Xi-
aolan Zhang. Towards Trustworthy Kiosk Computing. In Proceedings of the 8th IEEE
Workshop on Mobile Computing Systems and Applications (HOTMOBILE), pages 41–45.
IEEE Computer Society, Washington, DC, USA, 2007. ISBN 0-7695-3001-X. 56

[36] Jacob Gorm Hansen. Blink: Advanced Display Multiplexing for Virtualized Applica-
tions. In Proceedings of the 17th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), Urbana, Illinois, pages 15-20, June 2007. 65

[37] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann, M. Hohmuth, F. Mehnert, L. Reuther,
S. Schönberg, and J. Wolter. DROPS: OS support for distributed multimedia applications.
In Proceedings of the Eighth ACM SIGOPS European Workshop. Sintra, Portugal, September
1998. 14, 26, 29

[38] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The performance of
µ-kernel-based systems. In Proceedings of the 16th ACM Symposium on Operating System
Principles (SOSP), pages 66–77. Saint-Malo, France, October 1997. 26

[39] Hermann Härtig. Security Architectures Revisited. In Proceedings of the Tenth ACM
SIGOPS European Workshop. Saint-Emilion, France, September 2002. 40

[40] Hermann Härtig, Michael Hohmuth, and Jean Wolter. Taming Linux. In Proceedings of
the 5th Annual Australasian Conference on Parallel And Real-Time Systems (PART). Adelaide,
Australia, September 1998. 29

[41] Christian Helmuth. Ein Konsolensystem für DROPS. Großer Beleg, TU Dresden, URL:
http://os.inf.tu-dresden.de/papers_ps/helmuth-beleg.pdf, 2000. 25

[42] Christian Helmuth, Alexander Warg, and Norman Feske. Mikro-SINA—Hands-on Ex-
periences with the Nizza Security Architecture. In Proceedings of the D.A.CH Security
2005. Darmstadt, Germany, March 2005. 40

77

Bibliography

[43] Michael Hohmuth. The Fiasco kernel: System architecture. Technical Report TUD-FI02-
06-Juli-2002, TU Dresden, 2002. 29

[44] G. Humphreys, M. Houston, Y. Ng, R. Frank, S. Ahern, P. Kirchner, and J. Klosowski.
Chromium: A Stream Processing Framework for Interactive Graphics on Clusters. Pre-
sented at SIGGRAPH, San Antonio, Texas, 2002. 65

[45] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F. Mehnert, and M. Pe-
ter. The Nizza Secure-System Architecture. In Proceedings of the 1st International Confer-
ence on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom
2005). San Jose, California, USA, December 2005. 40

[46] Derek McAuley Ian Leslie, Richard Black, Timothy Roscoe, Paul Barham, David Evers,
Robin Fairbairns, and Eoin Hyden. The Design and Implementation of an Operating
System to Support Distributed Multimedia Applications. IEEE Journal on Selected Areas
in Communications, 14(7), September 1996. 23, 56

[47] SUN Microsystems Inc. Virtual box website. URL:
http://www.virtualbox.org. 26

[48] SUN Microsystems Inc. UltraSPARC T1 Hypervisor API Specification, January 2006. 40

[49] J. Liedtke. L4 reference manual (486, Pentium, PPro). Arbeitspapiere der GMD No. 1021,
GMD — German National Research Center for Information Technology, Sankt Augustin,
September 1996. Also Research Report RC 20549, IBM T. J. Watson Research Center,
Yorktown Heights, NY, September 1996. 29

[50] Peter Loscocco and Stephen Smalley. Integrating Flexible Support for Security Policies
into the Linux Operating System. In Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, pages 29–42. USENIX Association, Berkeley, CA, USA, 2001.
ISBN 1-880446-10-3. 38

[51] Y. Malaiya and J. Denton. Estimating Defect Density using Test Coverage. Colorado
State University Tech. Report CS-98-104., 1998. 39

[52] Nicola Manica, Luca Abeni, and Luigi Palopoli. QoS Support in the X11 Window Sys-
tems. In Proceedings of 14th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), St. Louis, MO, United States, April 2008. 23

[53] Frank Mehnert. Kapselung von Standard-Betriebssytemen. PhD thesis, TU Dresden, July
2005. 66

[54] Norman Feske and Christian Helmuth. A Nitpicker’s guide to a minimal-complexity
secure GUI. In Proceedings of the 21st Annual Computer Security Applications Conference
(ACSAC), 2005. 51

[55] Brian Paul. Introduction to the Direct Rendering Infrastructure. Linux World 2000, San
Jose, 2000. 66

[56] Rob Pike. The blit: A Multiplexed Graphics Terminal. Bell Labs Tech. J., 63(8, part 2):
1607–1631, 1984. 1

[57] Martin Pohlack, Björn Döbel, and Adam Lackorzynski. Towards Runtime Monitoring in
Real-Time Systems. In Proceedings of the Eigth Real-Time Linux Workshop. Lanzhou, China,
2006. URL http://os.inf.tu-dresden.de/papers_ps/pohlack06runtime_
monitoring.pdf. 19, 20

78

Bibliography

[58] I. Pratt. User-Safe Devices for True End-to-End QoS. Proceedings of the 7th International
Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), 1997. 23

[59] Steve Pronovost, Henry Moreton, and Tim Kelley. Windows Display Driver Model
(WDDM) v2 and beyond. WinHEC, 2006. 68

[60] Torvald Riegel. A Generalized Approach to Runtime Monitoring for Real-Time Systems.
Diploma thesis, TU Dresden, URL:
http://os.inf.tu-dresden.de/papers_ps/riegel-diplom.pdf, June 2005.
21

[61] Carsten Rietzschel. VERNER - ein Video EnkodeR uNd playER für DROPS. Diploma
thesis, TU Dresden, URL:
http://os.inf.tu-dresden.de/papers_ps/rietzschel-diplom.pdf, Octo-
ber 2003. 20

[62] James A. Rome. Compartmented Mode Workstations. Oak Ridge National Laboratory,
presentation at DOE Computer Security Meeting, Seattle, WA, April 1995. 55

[63] John E. Sasinowski and Jay K. Strosnider. ARTIFACT: A Platform for Evaluating Real-
Time Window System Designs. In Proceedings of the 16th IEEE Real-Time Systems Sympo-
sium (RTSS), pages 342–352, 1995. 22

[64] Robert W. Scheifler and Jim Gettys. The X Window System. ACM Trans. Graph., 5(2):
79–109, 1986. ISSN 0730-0301. 4

[65] Brian K. Schmidt, Monica S. Lam, and J. Duane Northcutt. The Interactive Performance
of SLIM: a Stateless, Thin-Client Architecture. In Proceedings of the 17th ACM symposium
on Operating systems principles (SOSP), pages 32–47. ACM Press, New York, NY, USA,
1999. ISBN 1-58113-140-2. 26

[66] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: a fast Capability
System. In Proceedings of the 17th ACM symposium on Operating systems principles (SOSP),
pages 170–185. ACM Press, New York, NY, USA, 1999. ISBN 1-58113-140-2. 38, 55

[67] Jonathan S. Shapiro, John Vanderburgh, Eric Northup, and David Chizmadia. Design of
the EROS Trusted Window System. In Proceedings of the 13th USENIX Security Symposium
(2004), pages 165–178, 2004. 14, 38, 42, 43, 48, 55, 57

[68] Chuck Thacker, Ed McCreight, Butler Lampson, Robert Sproull, and David Boggs. Alto:
A Personal Computer. Computer Structures: Principles and Examples, second edition, ed.
Siewiorek, Bell and Newell, McGraw-Hill, 1981, pages 549–572, 1979. 1

[69] Eamon F. Walsh. X Access Control Extension Specification. URL:
http://people.freedesktop.org/ ewalsh/xace.pdf, October 2006. 38, 54

[70] Eamon F. Walsh. Application of the Flask Architecture to the X Window System Server.
In Proceedings of the 2007 SELinux Symposium. Baltimore, MD, USA, March 2007. 38, 54

[71] Carsten Weinhold. Portierung von Qt auf DROPS. Großer Beleg, URL:
http://os.inf.tu-dresden.de/papers_ps/weinhold-beleg.pdf, 2005. 26

[72] Robert Wetzel. An Acceleration Architecture for DOpE. Diploma thesis, TU Dresden,
URL:
http://os.inf.tu-dresden.de/papers_ps/wetzel-diplom.pdf, 2003. 18, 19

79

	Introduction
	Quality of Service
	A brief history of quality of service on the GUI level
	Example 1: Flicker-free and smooth mouse cursor
	Example 2: Media playback at a constant frame rate
	The crux of encumbering quality of service by design

	Designing the GUI server as a resource scheduler
	Making worst-case execution times of redrawing jobs predictable
	Local scheduling of redrawing jobs
	Dealing with user interaction

	The DOpE real-time window server
	Widgets as server-side client representation
	Resource scheduling
	Advanced features
	Evaluation

	Related Work on GUI-level Quality of Service

	Compatibility
	User interaction with multiple virtual machines
	Displaying guest windows in host windows
	Input handling

	Feasibility analysis through experiments
	The X window system
	The Atari GEM GUI

	Data path from the guest GUI to the physical frame buffer
	Related work on seamless window-system integration
	Lessons learned

	Kernelizing the Host GUI
	Approaching security
	Security by design
	Application-specific trusted-computing base

	Premises for designing the host GUI server
	Preconditions
	Workloads
	Attacker model to defy

	Design
	Client-side window handling
	Buffers and views
	Input handling
	Trusted path
	Drag-and-drop
	Resource management

	Practical estimation of the achievable minimalism
	Intermediate result
	Related work on securing GUI servers
	Protecting and isolating GUI clients
	Assuring GUI integrity
	Minimizing complexity

	Hardware-accelerated Graphics
	Timeline of hardware-accelerated graphics
	Device overview
	Design space for multiplexing graphics hardware
	API-level resource multiplexing
	Device-level resource multiplexing

	GPU command-stream multiplexing
	Windows Device Driver Model

	Hardware-supported GPU-context management
	TCB complexity on account of hardware-accelerated graphics

	Conclusion

