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Abstract
Build systems are an integral part of every software developer’s tool kit. Next to the
well-known Make build system, numerous alternative solutions emerged during the last
decade. Even though the new systems introduced superior concepts like content signa-
tures and promise to provide better build accuracy, Make is still the de facto standard.
This paper examines GNU Make and SCons as representatives of two conceptually

distinct approaches to conduct software builds. General build-system concepts and their
respective realizations are discussed. The performance and scalability are empirically
evaluated by confronting the two competitors with comparable real and synthetic build
tasks.
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1 Introduction

The choice of the right build system for a certain software project is subject of an emo-
tional debate [McC03]. However, there is little data available to back these arguments.
How do these systems actually perform when confronted with the same nontrivial task?
A major problem is the migration cost which makes it hard to generate evaluation data
for reasonable sized projects. Ideally, one would like to know in advance if it is feasible
to employ a certain build system. Furthermore, one may want to move the software
project to a different build system to escape the shortcomings in the existing system.
This work tries to identify the benefits and drawbacks of two main players in the field

of build systems: GNU Make and SCons. The focus lies upon the core features of a
build system. Only occasionally features that mainly serve convenience are mentioned.
I hope to shed light on the practicability and performance in real-life scenarios, beyond
the scope of trivial programs.
Today’s build systems must be up to the task in at least four categories: Convenience,

accuracy, performance, and scalability. Of course, convenience is a very subjective
category and is assessed differently based on the experiences and expectations of those
who have to judge. Hence, this work will focus upon the fields which can be measured.
It’s important to know the accuracy limits of the employed build system to circumvent
resulting problems. Performance and scalability is a correlated domain and also depends
on the way the respective tools are used.
The next chapter will give an overview over the state of art and general concepts in

the domain of build systems. Afterwards, Make is presented as the leading build system
through the last three decades. SCons was chosen as the competitor because its design
varies greatly from Make and introduces a lot of new concepts. Furthermore, it was
continuously developed over the last eight years and is already used by open source and
commercial software vendors to build various medium-sized and even a number of large
projects.
An existing GNU Make based build system was ported to SCons with the goal of

replicating the existing features. The build performance for various use cases is evaluated
and compared. A focus is laid upon parallel build performance. This field is of growing
importance as even today’s commodity hardware is equipped with multiple processing
cores.
Finally, a synthetic project generator was conducted to get an idea about

configuration-independent build-system performance. The scalability is evaluated using
synthetically generated projects with arbitrary complexity.
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2 Background

In this chapter, general build-system concepts will be discussed. The design goals will
be examined. Afterwards, the theoretical foundation of a build system is presented
followed by a discussion of common build system features. Finally, a brief look is taken
at the build systems available at the time of this writing.

2.1 Design Goals
A software build system should have at least four properties. It should be easy to
use, deliver the results fast, make correct decisions, and it should be able to cope with
increasing demands and growing software complexities.

2.1.1 Convenience
The usefulness of a build system is primarily determined by the degree of helping the
developer to achieve his goals. Convenience is a broad field and depends on the amount
of supported features, the user interface convenience, the transparency and the extensi-
bility.

2.1.2 Correctness
A vital feature of a build system is that it always makes the right decisions. If it cannot
guarantee a correct behavior even in corner cases, the developer will start to mistrust
the build system and probably sacrifice performance. A classic case is discussed in
[Mil97] where full project rebuilds are sometimes necessary to accommodate the problem
of incomplete dependency graphs. However, it might not be possible or feasible to
guarantee correct behavior under all conditions. At least, the cases where the correctness
cannot be assured should be known and understood by the developer.

2.1.3 Performance
Performance means primarily how fast the build system can perform a requested opera-
tion and deliver the result. Moreover, the memory allocated during the build determines
the system’s performance. Most of the processing power is spent in the tools that are
called by the build system. Therefore, the biggest performance gain can be accomplished
by minimizing these invocations. Performance is in some ways orthogonal to the correct-
ness requirement, as more elaborate techniques induce a greater processing and memory
overhead. However, they might pay off in reducing redundant computations.
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2 Background

2.1.4 Scalability
Software systems are constantly growing in size and complexity. Different platforms
need to be supported. Furthermore, many different tools are involved in the build
process. A scalable build system can cope with very complex software systems and be
adapted to new requirements.

2.2 Software Rebuilding
A build system differs from an imperative program, like a shell script that invokes the
compiler, in being goal driven. The user requests a certain target and the build system
figures out how to build it.

2.2.1 Dependency analysis
In software build theory, the dependency graph is used to decide whether software
modules need to be rebuilt. In theory, a module only needs to be rebuilt when the build
command is modified or an imported entity changes in a way so that the generated
outcome differs from the one prior to the update. However, that relationship is difficult
to model and time-consuming to examine. Therefore, more coarse granularities are
chosen in practice. The most widely used operate on the file level. In this case the
nodes in the DAG are file names and dependencies can only be modeled between whole
files.

2.2.1.1 File signatures

If the dependency model uses file granularity, it must be decided when a file has changed
with respect to the dependency graph. Hence, when to rebuild the modules that depend
on it. A classic approach used by Make is to take the files’ timestamp as a reference.
Another way is to compare the files’ content, e.g. by checking its hash value. Whereas
timestamp-based signatures are simple and more efficient at first sight, they impose a
number of problems. First, causal order is deduced from imperfect timestamps based on
physical clocks. While this may not be a problem on isolated single-processor machines,
where the build process and the files all share the same time source, it puts the correct-
ness of the build into question on distributed and parallel environments. The timestamp
approach may also cause unnecessary rebuilds of large parts in deeply nested depen-
dency trees, e.g. if a comment update in a header file triggers the recompilation of an
object file producing an identical result. A content-based signature model can stop here
while timestamp-based systems need to rebuild all subsequent files which depend on
the object file. On the other hand, file content comparison or hashing are more compu-
tational challenging than timestamp comparisons, therefore hybrid methods also have
been developed, which require a minimum time lag, chosen to bypass real-world clock
offsets, or otherwise resort to file content comparison.
Simple timestamp comparison can also lead to wrong results. If the source file is

restored from a backup archive, the timestamp may change to an older date. A stateless
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2.2 Software Rebuilding

build system would not rebuild in that case. This problem can be solved by tracking
the timestamp of the source file which is used to build a target and trigger a rebuild if
it changes.
Various improvements and variants were discussed, for example to eliminate source

code comments before performing the content comparison [Bor89, ATW94].

2.2.1.2 Fine grained dependencies

The drawback of a model that regards files as opaque entities is the potentially huge
amount of redundant recompilations. For instance, if a rarely used function of a core
library is altered, all targets who link to the library need to be rebuilt, even though few
of them ever call the altered function.
Smart recompilation [Tic86] attempts to minimize recompilations by refining the

dependency relationship. Each dependency context is extended to include individual
items (i.e. symbols). Before a node is rebuild, the change set is matched with the
reference set. Only if the intersection is not empty, the recompilation is triggered. This
idea was later refined to further reduce recompilation efforts [SK88, Tic88].
The downside is the domain-specific nature of these approaches, which make them

difficult to implement in general purpose build systems.

2.2.1.3 Dependency declaration

The dependency relationships which make up the DAG need to be described. One
possibility is to require the manual declaration of all nodes a specific node depends on.
On the contrary, the build system could extract all dependencies.
The advantage of the first approach is that the build system does not need to incor-

porate domain-specific knowledge. On the other hand, explicit dependency declaration
is inconvenient and error-prone. Implicit dependencies are already described inside the
source files. The canonical example are include statements in C sources.
Most modern build systems support automatic extraction of implicit dependencies

for a variety of languages. Either the compiler is used directly or language-specific tools
are incorporated into the build system.

2.2.1.4 Dependency types

Real Dependency Describes a precedence relationship. Before the node can be built,
all nodes it depends on need to be generated. The node needs to be rebuilt if any
of its dependencies change.

Order-only dependency Describes a precedence relationship without the need to
rebuild after a change.

Intermediate nodes A temporary node which is created implicitly by a chain of build
commands.

Resource constraints To prevent parallel execution of build commands, shared
resources can be modeled as common nodes.
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2 Background

2.2.2 Build infrastructure
An often ignored topic is that changes in the build infrastructure might entail changes
in derived files. It is easy to understand that different build flags will probably produce
different target files, for example if debug symbols are included or omitted. However,
the compiler itself plays also an important role. If a different compiler is used in a
subsequent build, a derived file might need to be regenerated even neither the source
nor the build command changed. Therefore, the build tools should be modeled as an
implicit dependency.
Nevertheless, few build systems include the build infrastructure in the dependency

analysis. Many problems arise when trying to comprehend which tools may have an
impact on the outcome of a build. For example, the GNU compiler collection comprises
many tools which are involved in a build process. However, few of those may cause a
derived file to change due to modification of its internals. Most build systems assume
the build infrastructure to be fixed across subsequent builds and rely on the developer
to force a clean rebuilt when a vital part of the build infrastructure has changed.

2.2.3 Command scheduling
Once the DAG is set up, the build commands have to be executed. The DAG describes
a precedence relationship between transformation commands. The build system has to
make sure that commands are executed in the proper order. To generate a total order
compatible with the partial order relation defined by the DAG, topological sort can be
used [CLRS01].
Most build systems provide a facility to execute commands in parallel. However, some

compilers interfere with each other or do not allow to execute in parallel. This can be
modeled with resource constraints. Developers need a way to tell the build system about
such mutual exclusion cases.
The goal is to minimize the makespan. This is the problem of scheduling task graphs

to a set of available processors. Although this is mainly of interest on multiprocess-
ing platforms, uniprocessor builds might also benefit by executing different tasks when
stalling on I/O operations. Baalbergen described virtual processors which process jobs
non-preemptively. Computing an optimal schedule with regards to a minimal makespan
is a NP-complete problem [Baa88]. A number of different heuristics were proposed
to solve the multiprocessor-scheduling problem [GGJ78]. However, these algorithms
make a number of assumptions which have to be relaxed in the context of build-system
scheduling. In build systems, (1) jobs are not independent (precedence constraints);
(2) task execution times are not known in advance; (3) the DAG might be refined when
executing commands, specifically when implicit dependencies where extracted from gen-
erated source files; and (4) mutual exclusion constraints may prohibit running certain
commands in parallel (resource constraints). Therefore, a single scheduling solution for
the whole build is not applicable in general.
The most common scheduling algorithm incorporated into build systems is a variant

of FCFS (First Come First Served). The scheduler places all ready jobs into a queue
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which is processed by a set of processors. Some build systems also allow to define upper
load limits.

2.3 Build System Features

2.3.1 Partial compilation
Large software projects contain a big number of modules, programs, mandatory and
optional parts. The user shall be able to specify the parts of the project that must be
built. These can be directories, object files, programs, individual or sets of modules.
Ideally each node in the DAG can be built by passing its label to the build system.

2.3.2 Variant builds
Building variants is the ability to produce different targets from the same sources. The
canonical example are debug and release variants where the first contains debug infor-
mation and the latter is optimized. Another common case is building for different target
architectures. Different variants can either be build on demand or be generated side-
by-side. The latter requires multiple destinations for the products of the same sources.

2.3.3 Repositories
The repository concept was introduced to allow developers implement new features
without touching the original source tree. A repository is a replication of the source
directory structure. Multiple repositories build a single logical tree where an additional
repository represents an overlay to its predecessors. A repository might supplement new
files or cover existing files.
There are a number of conceptual problems with repositories. Build rules are usually

part of the directory tree and are also affected by repository overlays. Therefore, the
build tool must be aware of the repositories to be used before it can select the appro-
priate build rule definition. This can be done by command line parameters or external
configuration files which is rather inconvenient. Another problem is that the overlaid
files totally cover existing files with the same name in other repositories.

2.3.4 Configuration
Configuring the software system comprises two main features. One gives the user the
possibility to configure the software system based on his preferences. The other is to
(automatically) adapt the software system to the target platform. The build system can
support this by passing configured flags to the compiler or generate code based on the
configuration.

2.3.5 Compiler caching
A build is comprised of a large number of intermediate files being generated. Much
time can be saved when these files are cached and reused in later or other builds. For
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example, an object file might be linked to multiple targets. In case this object file is
cached while building one target it does not have to be regenerated when trying to build
the other target later.
Caching can also be employed in multi-developer build environments where a central

build cache is used to store shared derived files. Care must be taken to assure that
derived files have been generated with the same commands. Accordingly, the build
cache should also contain all necessary build information. A compiler cache can also
help to store multiple versions of the same file. For example, an object file is stored
with and without debug symbols.
The compiler cache can be integrated or transparent to the build system. In the latter

case, the compiler is wrapped by the cache manager. compilercache [Thi03] and ccache
[Tri04] act as preprocessors for C and C++ compilers. The preprocessed source file is
hashed and matched with the cached variants of the file. If the file is already in the
cache it is returned, otherwise it is compiled and added to the cache.

2.3.6 Parallel builds
Multicore and Multiprocessor architectures are widespread and should be exploited to
speed up the development process. The build system must be able to schedule individual
build tasks to run concurrently while not violating dependencies. A number of issues
was already discussed in 2.2.3. Amdahl’s law states that the maximum speedup is
determined by the serially executed fraction [Amd67]. If P is the fraction of the total
runtime which can be executed in parallel, and N is the number of processors, the
maximum achievable speedup is limited by the non-parallel executed fraction:

lim
N→∞

1
(1− P ) + P

N

= 1
1− P

This is worth consideration because most build systems’ operations are serially exe-
cuted while the command execution is parallelized. Therefore, the build system perfor-
mance imposes a limit on the maximum performance achievable by parallel execution.

2.3.7 Distributed builds
The idea behind distributed compilation is simple. In a network of hosts which are
dedicated to build a large number of source files, one host assigns build jobs to other
hosts configured as build daemons. For distributed builds to be beneficial in terms
of overall performance, the assignment of build jobs, transmission of the needed data,
and retrieving of the results must be faster than carrying out the build job locally.
Therefore the infrastructure performance parameters play a key role in deciding whether
a distributed build architecture is feasible.
Distcc [Poo03] is an approach that fits very well into existing build systems and can

indeed be used with both Make and SCons. The preprocessed sources are transferred
to build daemons for compilation. One problem are the potentially different build envi-
ronments on the build daemons. As the build system does not know about the remote
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(and unknown) build environments involved it cannot solve the problem discussed in
2.2.2.

2.4 Build Systems
In this section, we will take a brief look at a number of existing build systems. Make
and SCons will be examined in later chapters.

2.4.1 Jam
Christopher Seiwald designed Jam in 1993 to replace Make as the commonly used build
system [Sei94]. Jam has its own syntax that supports control-flow statements among
other features and which simplifies the description of software builds. Implicit depen-
dencies are extracted using regular expressions. The built-in rules primarily support
building C and C++ software.
Several different variants of Jam were developed, most notably Boost Jam, FT Jam,

KJam and Autojam.

2.4.2 Apache Ant and Maven
Apache Ant [Ant06] is a Java-based build system that uses Java classes instead of shell
commands. The build description files use a XML-based syntax. Ant is the preferred
tool to conduct Java builds. It contains a lot of domain knowledge and built-in tools
which are useful to build Java projects.
The verbosity and complexity of the Ant XML build definitions led to the development

of other build and software project management tools like Maven [Mav08]. Maven
adheres to the concept of convention over configuration. This simplifies the user supplied
files but restricts the software structure to its project model.

2.4.3 Rake and Rant
Rake [Wei04] was designed to be a Ruby based alternative to Make. The build descrip-
tion files are implemented as Ruby scripts. It supports pattern rules and flexible file
lists among other things, but depends on manual dependency declaration and times-
tamp signatures. Rant [Lan05] is another Ruby based build system that also supports
content signatures and implicit dependency extraction for C/C++ sources. Rant also
supports packaging and testing for Ruby software projects.
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2 Background

2.4.4 Overview

Build System Since Language Signature Implicit dep.
Make 1979 own Timestamp no
Jam 1993 own Timestamp yes
Bras 1996 Tcl Content yes
Cons 1997 Perl Content yes
Apache Ant 1999 XML, Java N/A N/A
SCons 2001 Python Content yes
Makepp 2002 Perl, Make Content yes
Rake 2003 Ruby Timestamp no
Rant 2005 Ruby Content yes
Waf 2006 Python Content yes
GNU Autotools 1994 M4, Make, Shell Timestamp yes
CMake 2000 own N/A yes

As can be seen, most of the more recently developed build systems use scripting
languages, instate content-based signatures and provide facilities to extract implicit
dependencies.

2.5 Summary
General build system concepts have been presented. Convenience, correctness, perfor-
mance and scalability were identified as the main design goals. An overview was given
about the available build systems and common features.
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3 Make

In this chapter, the Make build system will be examined. After a short excursion to the
development history, GNU Make is studied as the de facto standard Make variant in use
today. With Autotools and CMake, two important Makefile generators are discussed.

3.1 History
Make has undergone 30 years of software development. Though it has been optimized
and extended, its fundamental mechanisms still follow Stuart Feldman’s original propo-
sition [Fel79]. During the years, a number of different Make variants were developed.
Grosskurth [Gro07] gives a concise overview of the most interesting branches and devel-
opments.
With the advent of upcoming multi-processor systems, the possibilities of incorpo-

rating parallelism in Make was investigated by many researchers. Baalbergen [Baa88]
examines scheduling algorithms and proposed a system which employs parallelism trans-
parent to the user.
Miller [Mil97] demonstrates the problems of recursive usage of Make. It discusses that

a whole project Makefile approach eliminates the problems of incomplete dependency
graphs and is still effective enough to be used in large projects.

3.2 GNU Make
GNU Make is probably the most popular Make variant in use today. The idea of
portability has shifted from writing Makefiles understood by different Make variants,
towards a portable Make build system. This allows to exploit the more advanced features
of the build system, and not be limited to the least common denominator of partly
incompatible variants.

3.2.1 Build Definition Syntax
Make uses a simple syntax to specify targets, dependencies (called prerequisites) and
transformation commands. Build definitions are expressed in a domain-specific lan-
guage.
t a r g e t : p r e r e q u i s i t e s

command
The user requests the target to be built by invoking Make with its name. Make checks

whether the target’s timestamp is newer than all of the prerequisites’ timestamps. If it
isn’t, the command is run to build the target from the source files.

11
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Targets can be annotated with additional information by listing them as prerequi-
sites of special targets. .phony targets build unconditionally, .intermediate files are
cleaned after the build, .lowresolutiontime deal with inaccuracies of timestamps.
There are more described in [SMS06].
There is a syntax to specify Make rules and a different syntax to specify shell com-

mands. The Make syntax provides variables, text transformation support, conditional
parts and pattern rules.

3.2.2 Repositories with vpath
To support the repository concept, GNU Make has the vpath facility. It comes in two
flavors. A VPATH variable lists directories which are searched when looking for pre-
requisites and targets. Another more elaborate method assigns filename patterns with
certain directories. The latter can be chained to look for certain files in a determined
order.
When targets are out-of-date, they are rebuilt locally even if the prerequisites are

located in a remote repository referenced in the vpath variable.

3.2.3 Implicit rules
Make rule syntax provides implicit rules for built-in transformations. Implicit rules are
applied whenever a rule without command line is specified or a file is referenced for
which no rule exists. The rule is selected from a catalogue based on the target file
pattern. From this pattern, the prerequisite file is derived. Implicit rules can be chained
to build a file in multiple steps.
The commands invoked by implicit commands depend on a fixed set of variables.

These can be altered in advance to select different compilers or change the passed flags.

3.2.4 Automatic dependency extraction
To extract implicit dependencies out of source files, third party tools are needed. The
GNU Make manual recommends to emit dependency files containing Make rules for each
target file. These are included into the Makefiles.

3.2.5 Command scheduling
If no parallelization parameters are given, Make executes the commands one after
another in the order determined by the precedence relationship. The -jx parame-
ters controls the number of job slots used to execute commands. Parallelization can
be prohibited for the whole Make instance with the .notparallel target. There is no
facility for mutual exclusion of commands.
In recursive configurations, Make enforces this limit even across multiple Make

instances running in parallel. The Make instances itself do not allocate a slot, so that
there are slots left to execute the actual commands.
Furthermore, Make supports load limiting. If the system is above the given load

threshold, no additional job is executed.
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3.3 Makefile Generators
Writing Makefiles involves some recurring tasks like platform configuration and implicit
dependency extraction. Attempts were made to automate the process. Most notably,
the GNU Autotools and later CMake became commonly used on top of GNU Make.

3.3.1 GNU Autotools
In the 90’s, a number of inconveniences of the Make program were addressed by an
upcoming toolchain, which was later referred to as Autotools. The first among those
tools was Autoconf with the goal to reduce the redundant platform configuration issues,
which many open-source projects of that time had to face.
Autoconf [MED02] lets the user conduct a number of tests expanded to a shell script

from M4 macros. Based on the result of these tests, user configurable actions are
performed. This allows to adjust the build environment to different platforms, ensure
that the requirements are met, the proper libraries are installed and configure software
components based on user input. Zadok quantifies the benefits of using Autoconf and
arguments that it helps to improve portability and to reduce the size of the code base
[Zad02].
The advantage of this approach is the minimal requirements imposed on the target

platform. As the configure (shell) script is generated on the developers machine, the
platform where the software is to be deployed only has to offer a compatible shell, which
excludes Windows for that matter.
Automake [MTDL08] minimizes the size of the control file the developer has to specify.

Build needs are specified in Makefile.am file from which a full fledged Makefile is
deduced with a load of canned build rules for installation, testing, and deployment.
Automake also transparently extracts implicit dependencies.
The downside of Automake is that it forces projects to apply the GNU mindset to

organize software builds. Another hitch is that Automake does not provide the full
flexibility of GNU Make.
Libtool [MOTV08] helps to build and deploy shared libraries in a portable way. One

problem of Make is that it has problems to deal with variable suffixes of target files.
Libtool also aids library versioning and linking to shared libraries.
Over the years, a lot of platform knowledge has been assembled in the M4 macro

database. This is one of the main reasons, the Autotools are still in widespread use
today, despite the reliance of otherwise replaced languages like M4. Autoconf is, next
to Make, the mandatory and probably the most useful part of the toolchain. At least
this is indicated by projects like Apache, Python and others who replaced Automake
control files by direct Makefiles configured through Autoconf.
Although portability is the main design goal of the GNU Autotools, its support for

common platforms like Windows is amiss.
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3.3.2 CMake
CMake is a rather new development that has received significant attention lately when
it superseded the Autotools based build system of KDE [Neu06]. CMake differs from
Autotools in that it isn’t bound to GNU Make as the build system back end. For
example, on Windows platforms Visual Studio can be used to perform the actual build.
CMake describes itself as a “cross-platform build system generator” [Kit08]. Software

builds are specified in the CMake syntax. These specifications are transferred to control
files for one of the supported build systems on the target platform. CMake provides
features comparable to Autoconf for configuration.

3.4 Summary
GNU Make’s features have been presented. Make provides a simple syntax to describe
build dependencies between files. A number of tools evolved to simplify Make’s usage.
The GNU Autotools and CMake were introduced as examples of Makefile generators.
Makefile generators and wrappers still inherit all the problems and short comings of

the underlying build system. Furthermore, the loose coupling makes it more difficult to
profile and optimize the build system’s behaviour.
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In this chapter, the SCons next generation build system will be presented. The design
goals and architecture are discussed, concluding with a brief look at optimization tech-
niques and some interesting implementation aspects.
In contrast to the GNU build toolchain, SCons is a totally self-contained tool that

does not depend on existing platform utilities. The goal is to provide the user the full
power of a modern scripting language, Python in the case of SCons.
SCons has been in development for eight years now. It started as a port of the Cons

[Sid98] build system which chose Perl as the scripting language. SCons favors build
correctness over build performance.

4.1 Architecture
The key to exploit all the features of the SCons build system is to understand the
architecture and the interaction of the different components.
The core functionality of SCons is to define a dependency graph using the SCons API.

Actions are specified to transform source nodes into target nodes. Once the DAG is set
up, SCons walks the tree, checks whether the nodes are up-to-date by computing the
MD5 hash of the file contents. If a node needs to be rebuilt, a job is added to the work
queue, which is processed by worker threads, allowing parallel builds.
Implicit dependencies are extracted by scanners which are available for a number of

languages. Another important feature is the encapsulation of the environment state in
a Python object. This allows to modify, copy, inherit environment variables and isolate
different build environments from each other.
What makes SCons stand out in comparison to other build tools, is the object ori-

ented approach to manage software builds. Isolation can be achieved by instantiation.
Components can be extended via sub-classing. On the other hand, the API makes build
control files more verbose and complex, compared to other build systems.

4.1.1 Node subsystem
The Nodes make up the dependency graph and map the graph nodes to external rep-
resentatives. In most of the cases these are files, but those also can be directories or
Python values.
The idea behind the Node class hierarchy is to separate dependency management

from the actual Node representation (i.e. files, directories, values). The dependency
management is implemented in the Node base class while the Node representations
inherit from this class.
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4.1.2 Builder subsystem
Builders are the glue logic connecting Nodes with each other. Actions are associated with
extensions. Scanners are associated with source and target nodes. Emitters manipulate
the source and target lists. Generators can generate actions on-the-fly. Builders can
be chained together which allows multi-stage building. Builders translate its arguments
into Nodes and set up Executor objects to perform the execution of Actions.
Actions can execute a command (CommandAction), a Python function

(FunctionAction), or encapsulate a list of other Actions (ListAction). The Executor
computes the signature of the Action and applies the up-to-date status of the targets
being built.

4.1.3 Environments
Construction Environments encapsulate the environment state (i.e. environment vari-
ables) and get Builders assigned to it. Environments are used to generate different
build variants side by side and assign different build parameters to parts of the sys-
tem. Furthermore, Environments are the facility of choice to communicate variables to
subordinate SConscript files.
Environments can be cloned to create slightly adjusted variants of an existing envi-

ronment.

4.1.4 Signatures
SCons signatures are content based. The Nodes get a MD5 content signature which
is saved to a database along with the modification timestamp and the size of the file.
Furthermore, the action objects (or transformation commands) used to build derived
files are also hashed. Figure 4.1 on the facing page depicts the signature database
of a simple hello world program. Therefore, whenever either the file is modified, the
commands or flags change, a different compiler is used, the dependent Nodes will be
rebuild.
A Decider function is queried to inspect if a target must be rebuilt. The Decider

is called for every dependency of a Node along with its signature from the last build.
SCons provides content-based and timestamp-based default Deciders. Different Deciders
can be attached to different environments.

4.1.5 Scanner
Scanner objects are responsible for extracting implicit dependencies out of source files.
For each source file, an associated scanner is invoked which parses the file and returns
a list of files it depends on. A scanner may also process a file and its dependencies
recursively.
A C scanner might be implemented by searching for #include statements. This is

not really accurate, as the scanner would need to implement the full C preprocessor.
If the accuracy of the supplied scanner is insufficient, compiler generated dependencies
can also be used instead.
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hello

0748a196104c731a66c16419cacdfa73

Sat Apr 19 15:36:56 2008

6330

hello.o

9258ff058ba683f6d6bdc8d0b5c40f2b

Sat Apr 19 15:37:16 2008

718

/usr/bin/gcc

2b6a6480521b55c80243706014f9928a

Sat Sep 29 17:46:53 2007

206244

Link Action

58d658d3b7a23ac91dde054be7792056

$LINK -o $TARGET $LINKFLAGS $SOURCES

hello.c

fe52b09d97a8608e8e7f5e2a4b941d6e

Fri Apr 4 16:23:36 2008

77

foo.h

99d662641a1fc7bb79056864b2202caa

Sun Apr 13 01:41:51 2008

15

Compile Action

cf6ad7ab6ff03695bce18d7b1a3548cc

$CC -o $TARGET -c $CFLAGS $SOURCES

Figure 4.1: SCons signatures example

4.1.6 Tools
Domain specific knowledge is encapsulated in Tool objects. Tools are responsible to
detect utilities and prepare the Environment to make use of them. This involves setting
up Builders and instating necessary variables.
SCons ships with a number of Tools for different platforms, languages and compilers.

The built-in tools are slightly more powerful then the GNU Make implicit rules.

4.1.7 Scheduler
The subsystem that schedules Jobs for execution is called Taskmaster in SCons. The
Taskmaster ensures Nodes are evaluated in the proper order and interfering builds are
not executed in parallel. In general, the DAG can be converted to a linear list using
topological sort. However, specific builds may only need to deal with small subsets of the
whole DAG. Therefore, the DAG is walked starting from the specified top-level Nodes
down to the leaf Nodes of the graph partition.
The Taskmaster runs in a single thread. However, the individual Tasks evaluating

the signatures and executing the build commands are run in separate threads.
The Taskmaster which has a runtime complexity of O(n) is invoked for each processed

Node. Thus, the overall complexity is O(n2).
Preventing parallel execution of certain build commands can be achieved by attaching

a common Node as a side effect. The canonical use case is the fixed temporary file used
by Yacc builders [Baa88].
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4.1.8 Configuration subsystem
SCons provides Configure Contexts which should help configuring the build system
comparable to GNU Autoconf. It provides some basic checks which adapt a specific
Environment to the build platform. The availability of functions, libraries, header files
and type definition can be checked. Furthermore, custom checks can be executed. Typ-
ically a compiler is invoked on a synthesized source to check for certain features needed
by the software system.

4.2 Optimization
The improvements of the build accuracy and the more elaborate design have a signif-
icant impact on build performance. Therefore, a number of different techniques were
incorporated into SCons to tackle performance aspects from different directions.

4.2.1 Implicit cache
In analogy to the generated dependency files described in 3.2.4, SCons provides a mecha-
nism to reuse already extracted dependency information. Use of the implicit cache trades
in correctness for runtime performance. The problem with implicit caches relating to
the location of implicit dependencies is discussed in 6.2.2. An approach to overcome
this limitation is to also cache all locations where implicit dependencies are not found.
Subsequent builds check these locations in the proper order to detect new files which
shadow cached dependencies. According to one of the SCons developers, the described
technique is going to be integrated in future SCons versions.

4.2.2 Derived file cache
When multiple developers work on a single project, a lot of compilations are redundant
across different workstations. The CacheDir mechanism makes it possible to share
derived files located on a public accessible file system. For example, if CacheDir refer-
ences a NFS-mounted file system the built files are stored in this directory. Subsequent
builds reuse the cached files. The build signatures serve as the identification.

4.2.3 Interactive mode
SCons has an interesting feature added in version 0.98. The goal is to reduce the parsing
time in typical edit, build, test work cycles. Instead of reevaluating the build description
files on every invocation, SCons starts a console after parsing those. The console allows
to build and clean targets. Interactive mode eliminates the parsing overhead and reduces
the startup and response times.

4.3 Implementation Aspects
Python as the build description language offers a lot of possibilities to the build system
developer. As SCons itself is also implemented in Python, practically all aspects of
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the build system can be adapted to the specific requirements of the target system.
Furthermore, Python provides a collection of utilities to tackle performance problems.
These come in handy to optimize the build system for large software projects. Most
notably, SCons can be run through the Python profiler which reveals how much time is
spent in each user and SCons library method alike.
SCons uses metaclasses to implement and profile caches for internal objects. Instead

of computing certain objects over and over again, these are stored in class-private caches.
Hit and miss statistics provide insight how useful it is to cache the object.
The script user interface is decoupled from the SCons execution engine. Therefore, it

is possible to replace the interface with a different front-end which might be more suited
for the task at hand.

4.4 Summary
SCons’ design goals and architecture have been examined. In comparison to Make,
SCons has a more elaborate stateful signature subsystem. It attempts to incorporate
all aspects of modern build systems in a single tool, including configuration and build
caches. The object oriented approach makes it possible to adapt SCons to different use
cases and offers great flexibility to the build system developer.
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In this chapter, the GNU Make based build system of the Genode OS Framework
[FH06, Gen08] is evaluated and the port to SCons is described. The effort, benefits
and shortcomings will be examined. A quantitative comparison follows in the subse-
quent chapter.

5.1 Build System Design Aspects
The Genode build system is heavily oriented towards user convenience. Additional
features can be added without touching existing sources or build files. This is achieved
by exploiting the repository concept and the declarative nature of its build specification.
The build system uses a recursive Make model. To avoid problems with incomplete

dependency graphs, the build system splits the project in two logical parts. A part
listing all the source files unique to the target built, and another part comprising all
shared sources. The latter are called libraries in this context. Whenever a target is built,
the build system walks down the dependency chain and rebuilds the needed libraries.
To improve performance, the derived library files are cached.
Listing 5.1 shows a target.mk build description file which controls the build of a

binary with the name nitpicker. There is not a single Make rule. The Genode build
system derives the Make rules based on special variables (e.g. SRC_CC). The vpath
feature is used to search for files in different locations.

Listing 5.1: Genode target description example with Make
TARGET = n i t p i c k e r
REQUIRES = ba s t e i
LIBS = cxx env s e r v e r b l i t
SRC_CC = main . cc \

view_stack . cc \
view . cc \
user_state . cc

SRC_BIN = de f au l t . t f f

INC_DIR = $ (PRG_DIR) / . . / i n c lude \
$ (PRG_DIR) / . . / data

vpath %.cc $ (PRG_DIR) / . . / common
vpath % $ (PRG_DIR) / . . / data
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Configurability was another design goal. The configuration subsystem is an integral
part of the Genode build system. Platform specific components reside in separate files.
Porting the Genode OS Framework to another architecture does not require any changes
of existing files. Instead, porting is done by supplementing new files.
The specialization mechanism allows to add a Makefile that covers the new architec-

ture. When the user specifies this new “specname” in the specialization configuration
file, all generic software components will be built for the new platform without any
changes of the existing build descriptions.

5.2 Migration to SCons
The intention was to replicate the convenience and style of the build specifications.
SCons repositories were employed to mimic the Genode repository concept. Those

fitted well the requirements and were even less verbose at the cost of some flexibility.
The VariantDir mechanism separates the source directories from the target directory.
Due to the way one has to specify source files it is rather non-intuitive, but it serves its
purpose.
To invoke the build specifications the SCons Glob facility was used, which integrates

nicely with repositories.
Finding a way to incorporate the declarative style of the build files and hide the SCons

business logic was more challenging. I have chosen a model where these specifications
are executed as Python scripts and later parsed to derive SCons rules from them. One
problem encountered with this non-standard usage of SCons is that the node creation
is deferred. With the original Make build files one can add custom Make rules to
the declarative statements for example to execute tests with the compiled target. To
overcome this limitation, post-process functions were added which can directly utilize
the SCons API. The resulting descriptions alienate from the desired Make look & feel
and are perceived as being awkward.

Listing 5.2: Genode target description example with SCons
TARGET = ’ n i t p i c k e r ’
REQUIRES = ’ ba s t e i ’
LIBS = ’ cxx env s e r v e r b l i t ’
SOURCES = ’ ’ ’main . cc

view_stack . cc
view . cc
user_state . cc ’ ’ ’

BINARIES = ’ d e f au l t . t f f ’
DIR = ’ s r c / s e r v e r / n i t p i c k e r ’
PATHS = ’common ba s t e i data ’
INCLUDES = DIR+’ / inc lude ’+DIR+’ /data ’

Listing 5.2 shows the SCons build description file corresponding to the target.mk
shown in listing 5.1. This is a Python script which is executed in an isolated namespace.
Therefore, most variables are represented as Python strings. As the repository-aware
Glob facility is not able to search recursively for build description files at the time of
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this writing, the build descriptions are placed in a central location of the repository.
The directory to the source folder must be specified as it cannot be derived from the
description file anymore. The vpath facility is emulated by a less powerful manual
search for source files. However, source types can be derived from the extension and
need not be discriminated via an explicit variable.
What actually made some rules easier compared to Make is the possibility to specify

Builders in Python syntax. The specific requirements of linking binary files to targets
was more straightforward to implement as a Python function and more efficient.

5.3 Comparison
The SCons port has been to designed to resemble the convenience and description style
of the GNU Make based system. The user-visible features are very similar in both build
systems. However, it was tried to reuse existing SCons concepts like VariantDir and
SourceDir to achieve the desired behavior. The target and library description style
covers a lot of build system complexity and business-logic but also sacrifices flexibility
in the case of SCons.
The core of the GNU Make based Genode build system is implemented in 5 Make-

files which sum up to 615 lines of code. The target, library, and specialization build
descriptions are distributed over 82 files and contain 800 lines in total.
The core of the SCons-based Genode build system contains 678 lines of code in 4 files.

The build descriptions are scattered over 83 files and contain 677 lines of code in total.
For what it is worth, there is no significant difference in the quantitative LOC mea-

sures. Due to the specific requirements of the Genode build system, the core of the
respective build systems need to implement the logic for the library and target concept.
Furthermore, the minimal declarative build description requires some wrapping over-
head, especially in the case of SCons. This is the main reason for the rather complex
core description files.

5.4 Summary
It was possible to migrate most features from the Make based build system to a SCons
based variant. The behavior is not totally equivalent and the build description files are
not compatible, although similarities exist. It must be noted that it was not possible
to perform the migration step by step. A substantial amount of work was needed to
recreate comparable behavior and meet the original design goals. The resulting SCons
build system meets these criteria.

23





6 Evaluation

In the previous chapters, GNU Make and SCons were presented individually. The Case
Study explored the convenience facets and the migration cost to move from Make to
SCons. In this chapter, both build systems’ supported features will be compared. It is
evaluated how the build systems comply to the design goals of correctness, performance,
and scalability.

6.1 Feature comparison
GNU Make and SCons have different strengths and weaknesses. Table 6.1 shows what
features are supported by the two build systems and how they are instated.

Table 6.1: Feature comparison
Feature GNU Make SCons
Partial compilation Target names Filenames, Alias
Variant builds - VariantDir
Repositories vpath SourceDir
Configuration -1 SConf
Implicit dependencies - Scanners
Parallel builds yes yes
Load limitation yes -
Mutual exclusion - SideEffect
Compiler caching -2 CacheDir
Distributed builds3 - -
1 Supported when used with Autoconf or CMake
2 Supported when used with CCache
3 Supported when used with Distcc

6.2 Limitations of Build Correctness
One has to differentiate two types of build system decision errors. On the one hand,
a build system might build too much, sacrificing performance. On the other hand, a
change might go unnoticed and no rebuild is issued. The latter case might be trouble-
some. A developer might spend precious time, hunting a bug that’s already fixed, if it
had only been built correctly.
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A number of factors are discussed leading to wrong build results. The reasons are
identified for common cases of wrong decisions and how problems can avoided.

6.2.1 Signatures
The fundamental challenge of a build system is the decision whether a file needs to be
rebuilt. GNU Make’s stateless timestamp approach does not rebuild in the following
cases, even it deems necessary:

• A source file is restored from a backup archive and receives an older timestamp.

• Environment variables change, e.g. the compiler flags.

• Different transformation tools are used, e.g. a different compiler.

Conversely, build systems frequently build too much and sacrifice performance, for
example when changing comments in source files. The timestamp-based signature sys-
tem will rebuild all downstream target files which depend on the generated object file.
SCons signature subsystem keeps a lot more information than what Make can extract

out of file timestamps.

6.2.2 Transient Headers
An inherent challenge in C/C++ software projects is that of including the right header
files. There is a list of locations where a header file may be located. The build system
needs to track the proper header files to decide whether a header change triggers a
recompilation.
The GNU Make manual recommends a dependency cache to store implicit dependen-

cies (see 3.2.4). There are a number of problems with keeping the cache up-to-date. If
a once included header file is removed (and therefore no longer part of the DAG), it is
still stored in the cache. GNU Make introduced the no-prerequisite targets to overcome
this issue.

Listing 6.1: No Prerequisite Targets
foo . o : foo . c foo . h

$ (CC) $ (CFLAGS) −c $< −o $@
f oo . h :

In Listing 6.1, foo.o is rebuilt when foo.h is deleted and no longer a dependency.
Even more challenging is shadowing of header files. A modified header file is placed in

a location which takes precedence over the location where the cached file is stored. Make
does not trigger a rebuild because it still considers the dependent targets up-to-date.
Only a manual rebuild of the implicit cache solves this problem.
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6.3 Performance Comparison

6.3.1 Use Cases
To provide meaningful data, real-life use cases are used to illustrate the build system’s
performance on every day’s build tasks. The most fundamental task is probably a full
project build. This is not only interesting for developers but also for users who might
install a package from source code. It is expected that the different build systems
have comparable performance as this should be determined by the commands executed
(compiler, linker, etc.). Beside the total build time, the number of processes spawned is
measured and the time spent parsing build rules.
Another common task that should give an indication of the raw parsing and depen-

dency analysis performance, is an up-to-date check when no commands need to be exe-
cuted. That means after a full project build, another full build is issued which should
just report that the derived files are up-to-date. It is expected that build systems with
more sophisticated signature processing and dependency analysis perform worse than
those with more simple ones.
A developer will most probably only work on a small subset of the project at a time.

As a consequence he will not need to rebuild the whole project to test the changes he
made. So another key feature is to build a specific target.
As a typical developer’s task, a small subset of source files is altered and a recompile

is issued. It is expected that higher quality dependency analysis and a more fine-grained
signature model will countervail the additional overhead. However, this is difficult to
conduct as an automated test and thus not part of the benchmark.
Another interesting property measured is targeting the scheduling algorithm which

walks the DAG. The test project is built using parallel jobs on multiple processors and
multi-core platforms.

6.3.2 Scalability Test
As projects grow bigger and become more complex, so do the demands on the build
system. It is hard to model the complexity and benchmark the build performance on
real life projects. Hence, a synthetic project generator has been developed to observe
the behavior when the number of targets, libraries, repositories is tweaked. Due to
the synthetic nature of the benchmark, the results must be taken with a grain of salt.
However, it will help to gain insight in how the processing and memory footprint scales
with growing complexity of a software system.

6.3.3 Test Framework

6.3.3.1 Used Build Systems

The scalability test is carried out with the build systems used to build the Genode OS
Framework. To identify shortcomings in the specific way Make and SCons are used,
minimal featured variants of Make and SCons build systems are also measured.
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The minimal featured non-recursive Make variant is based on the design proposed by
Miller [Mil97]. Implicit dependencies are extracted through the compiler as a side effect
of compiling the source files. Target specifications are included in the top-level Makefile.
The minimal featured SCons variant uses the SCons API directly. This should give an
indication of the raw parsing and command execution capabilities.
Version 3.81 of GNU Make and SCons 0.98 were used in the benchmarks.

6.3.3.2 Build Platforms

The benchmarks are performed on Linux 2.6.22 on a variety of hardware platforms:

• AMD Athlon 64 Processor 3700+, 1GB main memory

• Intel Core Duo T2250 1.73GHz, 2GB main memory

• Intel Core 2 Quad-Core 2.4GHz, 4GB main memory

6.3.3.3 Measurement Tools

To measure runtime performance the GNU time utility is used.
Memory consumption is measured differently in Make and SCons. SCons reports

the amount of virtual memory it uses when the ––debug=memory flag is passed. The
returned data was checked with Valgrind/Massif.
GNU Make does not support such a feature. Furthermore, if GNU Make executes in

a recursive manner, it consists of a number of processes whose memory footprint must
be accumulated. The memory usage of all running make processes is sampled and the
maximum amount of memory used during the build process is recorded. This will ignore
tools which strictly speaking belong to the build process like sed and find. Sampling
artifacts also impose an error onto the measurement results.
Neither method is accurate. However, the results shall give an indication of the order

of magnitude of memory demand. The memory consumption of the compiler or linker
invocations is not included as it varies greatly depending on the input data.

6.3.4 Benchmark

6.3.4.1 Genode OS Framework build

Figure 6.1 on the next page illustrates the build performance of the Genode OS Frame-
work built for a Linux host platform. The most common use cases were tested. Surpris-
ingly, SCons outperforms GNU Make in the full build and up-to-date check scenarios
and is only minimally slower when building specific targets.
Why is the GNU Make-based Genode build system such slow compared to the SCons

based variant? In the previous chapters it was stated, that the SCons signature model
was more computational challenging than the simple Make model. However, the recur-
sive GNU Make configuration employed in the Genode build system has to execute a lot
of utilities. Make itself is spawned 293 times to perform a full build. The same Makefiles
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6.3 Performance Comparison

Figure 6.1: Genode Build Performance on Intel Core Duo

are parsed redundantly for each target. Moreover, the process creation overhead must
be considered.
The full build compiles 117 source files, converts 31 binary files, and links 27 targets

and 18 libraries in the current configuration. There is a significant runtime difference
between GNU Make and SCons performing the same build. The next section will
evaluate the parallel build performance.

6.3.4.2 Parallel build

The build system itself takes a non-negligible share of the total build time. This is
illustrated by the runtime of the up-to-date check in figure 6.1 and becomes important
for the application of Amdahl’s law. Typically, large parts of the build system execution
itself is not parallelized and the build commands are run concurrently.
Figure 6.2 on page 31 depicts the behavior of Make and SCons on a quad-core proces-

sor with hyper-threading units. The biggest speedup can be achieved when switching
from one job to two parallel jobs (see Table 6.2 on the next page).
Furthermore, SCons exploits the four cores much better than the recursive Make

variant. A reason is that SCons keeps the whole DAG in memory and can schedule
totally unrelated jobs in parallel. In contrast, recursive Make only processes one target
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Table 6.2: Genode parallel build speedup
Jobs 1 2 3 4 5 6 7 8
GNU Make 1.00 1.50 1.69 1.76 1.77 1.79 1.79 1.80
SCons 1.00 1.92 2.73 3.37 3.51 3.67 3.83 3.91

at a time and can only schedule compilation steps for the target it processes. This means
that Make runs out of potential jobs just before the target is finished. In the degenerated
case, that there are a large number of single source targets, Make would only be able to
schedule one job at a time, regardless of the number of available processors. However,
it must be emphasized that Make is able to exploit parallelism as long as it isn’t used
recursively; or the recursive work sets are big enough.
Another observation is that additional virtual processors, whose number exceed the

actually available processors, lead to better build performance. However, there is a limit
beyond which the speedup declines again. An empiric rule of thumb indicates that twice
the number of virtual processors is a good estimate for optimal build performance in
most use cases.
Amdahl’s law states that the achievable speedup is determined by the fraction of the

system that must be executed serially [Amd67]. In the case of build systems, most of the
work is done serially while external commands are executed in parallel. When ignoring
precedence and resource constraints, the serially executed build system overhead solely
determines the achievable build performance. Therefore, the higher the computational
overhead of the build system, the lower the achievable speedup.
For reference, the build systems’ parallel build performance is illustrated in figure 6.3

on page 32 for different build configurations of a synthetically generated project. The
results match the initial assumptions of the behavior of the build systems. GNU Make
is the fastest and reaches a speedup of 3.73 with 8 parallel jobs (see table 6.3). This
shows that the parallel performance is primarily determined by the build configuration.
The actual build system is of secondary importance.

Table 6.3: Parallel build speedup for synthetic project
Jobs 1 2 3 4 5 6 7 8
SCons* full build 1.00 1.66 2.17 2.30 2.36 2.35 2.35 2.35
SCons* specific target 1.00 1.09 1.13 1.13 1.14 1.13 1.14 1.13
SCons full build 1.00 1.74 2.26 2.41 2.46 2.47 2.46 2.45
SCons specific target 1.00 1.12 1.17 1.18 1.19 1.18 1.18 1.19
Make* full build 1.00 1.81 2.12 2.27 2.31 2.32 2.32 2.31
Make* specific target 1.00 1.78 2.08 2.25 2.28 2.19 2.19 2.19
Make full build 1.00 1.92 2.78 3.36 3.56 3.64 3.67 3.73
Make specific target 1.00 1.17 1.23 1.26 1.27 1.28 1.28 1.27
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Figure 6.2: Genode Parallel Build Performance

6.3.4.3 Scalability test

Figure 6.4 on page 33 shows the runtime differences of full synthetic project builds.
The Genode build systems using Make and SCons were opposed to minimal featured
variants. The runtime grows linearly with the number of nodes in the DAG.1 Non-
recursive Make is the fastest among the four, almost solely determined by the compiler
and linker invocations. The Make build system of Genode has a huge overhead, it needs
almost twice as much time compared to its non-recursive competitor.
The large differences must be partly ascribed to the characteristic of the synthetic

projects: A large number of cheap-to-build files need to be generated. Therefore, the
build system’s performance is overstated in comparison to real-life projects, where the
build system itself takes up significantly smaller shares.2
In the illustrated case, 21 source files constitute a target. The Genode build system

spawns a make instance for each target.

1 The number of nodes depend on the number of source files but the latter is believed to be more
illustrative.

2 SCons’ introspection reveals the time spent with parsing, build system execution and external com-
mand execution; illustrated by the shaded areas of the stacked bars.
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Figure 6.3: Parallel Build Performance for synthetic project

As can be seen in figure 6.5 on page 34, SCons needs a lot more memory than Make for
performing the same task. There is a linear relationship between the number of source
files and the amount of memory allocated in all build systems but recursive Make. The
reason for the low memory footprint in recursive Make accounts to the layout of the
synthetic project, which produces a large set of independent targets. Recursive Make
spawns a separate process for each target and only needs to keep information about
source files related to the current target. Therefore, only a small part of the DAG is
kept in memory at a time.
Interestingly, there is a very big margin, almost one order of magnitude, between

SCons and Make. The offset memory consumption of approximately 10MB accounts for
the SCons source which must be loaded in advance. However, the fast linear growth in
memory consumption is due to a large amount of information attached to each Node
object. By extrapolating this graph, one can predict that a SCons based build sys-
tem will be exposed to thrashing when the amount of physical memory is lower than
what SCons requires. Another show-stopping effect happens when the available virtual
memory is exhausted and SCons has to abort with a MemoryError.
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Figure 6.4: Scalability test runtime performance

6.4 Summary
Make and SCons have been evaluated from a feature and a performance perspective.
SCons proved to be more accurate. Wrong build system decisions in Make are related
to the stateless timestamp based file signature model. Build environment changes are
not accounted for, files restored from archives are not handled correctly, and implicit
dependency order may be violated. SCons on the other hand, has limited capabilities
to extract implicit dependencies. If it has to resort to external tools to extract those,
unnecessary recompilations are issued.
With regard to runtime performance and memory consumption, non-recursive Make

proved to be most resource friendly. SCons has a decent runtime performance and is
significantly faster than the tested recursive Make build system. However, SCons has an
excessive memory footprint which scales linearly with the number of nodes. Recursive
Make has the least memory consumption but the worst runtime performance. Another
observation is that Make performance very much depends on the way it is used. While
SCons offers a number of runtime introspection tools, Make users need to resort to
profiling tools of the underlying system.
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Figure 6.5: Scalability test memory consumption

SCons always builds the whole DAG, computes implicit dependencies, before any
command is executed. That means there is a fixed amount of computational overhead,
regardless how many commands are finally executed. Make, for example, can be used in
a way that it will extract implicit dependencies on compilation of the target and store
this information in a distributed cache. However, this may only speed up a full initial
build.
Moreover, it is possible to reduce execution time and memory consumption by a great

margin, by constructing only a partition of the dependency graph. This can be done
if only a subset of targets need to be built and it is known in advance which build
instructions need to be parsed. The Genode build system employs this scheme.
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Both contenders have a number of strengths and weaknesses. GNU Make and SCons
are both general purpose build systems. Therefore, more specialized build systems may
be more sophisticated in its respective domains.
The choice of Python as the build description language of SCons makes it possible to

achieve very complex tasks without sacrificing readability. The object oriented approach
makes it possible to address very advanced requirements in isolation of each other.
However, there is a stiff learning curve if the user does not know Python in advance.
The build descriptions tend to be a little more verbose compared to those of Make.
That’s mostly due to Python being a general purpose language, while Make’s syntax
was crafted for the problem domain.
SCons proved to be more accurate, mostly due to its stateful, content-based signature

model.
On the other hand, GNU Make proved to be more resource friendly, especially regard-

ing the memory footprint. SCons needs to address this problem to be a viable alternative
to Make when building large software projects.
The benchmarks have revealed significant performance differences between different

build systems, configurations and use cases. This indicates that it is worth to invest some
time to analyze and optimize the build system of large software to save the developer’s
time. This requires tools which can give insight in the build system internals. Make
lacks these tools and Makefile generators make it even more complicated to fine tune the
build system. On the other hand, SCons provides a number of tools to analyze runtime
performance.
The benchmark results back Miller’s argument that recursive Make is indeed harmful

[Mil97]. Not only is it more complicated to model interdependencies between separate
modules because of which the developer has to make sure these precedences are honored.
The benchmark results simply do not justify its usage. Especially the poor parallel
performance exposes the conceptual weakness of the approach.

7.1 Future Work
SCons has demonstrated that content-based signatures are superior to simple
timestamp-based signatures. One pitfall is the computational cost to generate those.
There are a number of ways to avoid the expensive computation of content signatures.
An idea is to monitor file system changes and only recompute the content hash if a write
access was reported. Another approach could benefit from internal hashing some file
systems exert (e.g. BTRFS). If a file’s hash could be accessed by the build system, it
would not need to compute checksums at all.
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Another performance bottleneck is setting up the DAG each time a build is triggered,
especially in large systems. The DAG could be made persistent and streamed in during
successive builds. Some care need to be taken, to ensure consistency between the DAG
and the file system, though.
The evaluated build systems treat each command equally when executing parallel

jobs. This can lead to suboptimal schedules if the commands’ runtimes have a high
divergence. For example, in a build system which transcodes a movie next to performing
traditional compilation tasks, the optimal schedule with regards to runtime would assign
the transcoding to one processor and execute the compilation on the other one (on a dual
processor platform). Transformation costs could be modeled by assigning weights to the
edges of the DAG. These could be manually assigned, heuristically estimated (e.g. input
complexity) or learned during the initial build [Baa88]. A more elaborate scheduling
algorithm like [SRK07] could also help to better exploit multi-processor platforms.
It has been proposed to make use of build systems for goal oriented programming

[vR98]. SCons already supports generic code execution for the Python language through
Builders and can be used as the execution engine. However, it still lacks a facility to
express constraints other than precedence and mutual exclusion. A semaphore mecha-
nism would make the execution engine more powerful.
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Glossary

DAG Directed acyclic graph

MD5 Message-Digest algorithm 5: cryptographic hash function with 128-bit hash value
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