
A Nitpicker’s guide to a minimal-complexity secure GUI

Norman Feske and Christian Helmuth
Technische Universität Dresden

{feske,helmuth}@os.inf.tu-dresden.de

Abstract

Malware such as Trojan Horses and spyware remain to
be persistent security threats that exploit the overly com-
plex graphical user interfaces of today’s commodity oper-
ating systems. In this paper, we present the design and
implementation of Nitpicker—an extremely minimized se-
cure graphical user interface that addresses these prob-
lems while retaining compatibility to legacy operating sys-
tems. We describe our approach of kernelizing the win-
dow server and present the deployed security mechanisms
and protocols. Our implementation comprises only 1,500
lines of code while supporting commodity software such as
X11 applications alongside protected graphical security ap-
plications. We discuss key techniques such as client-side
window handling, a new floating-labels mechanism, drag-
and-drop, and denial-of-service-preventing resource man-
agement. Furthermore, we present an application scenario
to evaluate the feasibility, performance, and usability of our
approach.

1 Introduction

Spyware and Trojan Horses are crucial security problems
of today but they are not widely addressed by developers of
operating systems (OS) and graphical user interfaces (GUI),
who are afraid of breaking compatibility with existing com-
modity applications.

In former times, applications behaved friendly and co-
operated with each other to please the user. GUIs designed
twenty years ago do everything to facilitate communication
among applications without bothering application program-
mers with security protocols. Commodity GUIs of today
still expect applications to be nice. Unfortunately, the se-
curity assumptions about the good behavior of applications
do not hold anymore. Today, computers are ubiquitously
connected to networks and it is usual practice to download
applications and applets from untrusted sources. This prac-
tice brings along the risk of falling prey to malware. Once
installed on a system, malicious code can furthermore ex-

ploit the networking facilities to communicate.
In 2004, the overdue discussion about what OS design-

ers can do about GUI security was brought back to life by
J. Shapiro et al. with the presentation of the EROS Trusted
Window System (EWS) [22]. However, the presented ap-
proach supports only a dedicated set of applications com-
piled for the particular platform while the broad range of
mass-market software is not available.

In contrast, current OS and virtualization techniques pro-
vide powerful ways of securing applications while retain-
ing support for legacy software. Xen [11] provides coarse-
grained isolation of concurrently running virtual machines
and heads toward multi-level security. Virtual-machine-
monitor (VMM) technology gets an additional spin by In-
tel’s release of Virtualization Technology [5] and AMD’s
release of the Pacifica specification. Microsoft’s Next Gen-
eration Secure Computing Base (NGSCB) [20] and its re-
cently announced hypervisor architecture [6] will use these
technologies to separate trusted services from a monolithic
Windows OS by partitioning the underlying platform.

The isolation mechanisms implemented by these plat-
forms enable the safe execution of security applications
aside of a sandboxed legacy OS. With our work, we com-
plement these techniques by an extremely minimized se-
cure GUI to fight security problems such as spyware and
Trojan Horses. Instead of discussing system policies such
as session management, which vary a lot among different
platforms, we focus on low-level mechanisms that are ap-
plicable to a large variety of target platforms. We address
the following classes of malware:

Applications spying on other applications: No appli-
cation should be able to obtain sensitive information from
another application via the GUI, for example by taking a
screen shot. Section 2.2 tells you about our mechanisms
to isolate client applications while still supporting existing
commodity software.

Applications observing the user: Spyware should not
be able to sample key strokes and mouse actions. In Section
2.3, we show how we make applications receive only those
input events that are meant for the particular application.

Applications obtaining data from the user by fraud:



GUI
Server

Client Client Client Client

Video Device Input DevicesHardware

Figure 1. General scenario.

Trojan Horses mimic trusted applications to wrest sensitive
information from the user. In Section 2.4, we pull out our
weapon to fight Trojan Horses.

Denial of service of the user interface: Current overly
complex GUIs are prone to denial-of-service attacks driven
by client applications. Such applications can infinitely grab
the mouse pointer or open a full-screen window that cap-
tures all input events to make the user interface inaccessi-
ble. Furthermore, a GUI server that allocates resources on
client request is at the mercy of its clients not to exhaust
the available resources. When relying on high availability,
malicious or faulty applications are an unbearable risk. Our
approach for managing server-side resources is explained in
Section 2.7

After presenting the design of our minimal-complexity
GUI server that we call Nitpicker in Section 2, we outline
its large application space by a selection of potential target
platforms in Section 3. Our implementation for one par-
ticular platform is described in Section 4 and evaluated in
Section 5. After revisiting additional related work in Sec-
tion 6, we conclude the paper with Section 7.

2 Design for Nitpickers

Figure 1 provides an overview about the components that
we discuss. One GUI server exclusively accesses the hard-
ware and serves a number of clients. All clients and the GUI
server are executed within dedicated isolation domains, en-
forced by the underlying OS kernel. In the following, we
refer to these client applications as clients.

High complexity of system software implies a high risk
for the robustness and security of dependent software com-
ponents. The GUI server is a crucial part of system soft-
ware on which end-user applications absolutely need to rely.
Consequently, the design of the GUI server described in this
section follows the principle of minimal complexity. We
only integrate mechanisms for enforcing security and a core
of mandatory GUI functions that cannot be implemented in
another system component. As we will see, this condition
applies for a surprisingly low amount of GUI functionality.

All desired functionality that is not provided by the

server must be implemented in each client. This does
not mean that each client has to bring along a substantial
amount of overhead. Shared libraries can provide function-
ality that is common among multiple clients and must be
loaded only once.

Let us begin our survey with the discussion of one key
decision leading to the low complexity of Nitpicker.

2.1 Client-side window handling

High complexity of today’s GUI-based applications is
required to manage widgets, which are the basic building
blocks of a GUI. Widget toolkits such as Gtk and Qt offer a
large variety of widgets (e. g., cascaded menus, trees, multi-
column lists) and powerful mechanisms for widget layout.
This comes at the cost of extremely high complexity, for ex-
ample, the Qt toolkit consists of more than 300,000 lines of
C++ code.

There are window systems that implement widget han-
dling on the server side, for example Fresco [3], and DOpE
[14]. While server-side widget handling has advantages
with regard to responsiveness and consistency, the authors
of EWS state that complex widget management should be
implemented on the client side. From the security perspec-
tive, this declaration is valid because widget toolkits do not
enforce security policies at all. Consequently, EWS only
provides windows but no buttons, menus and other widgets.
In DOpE however, a window is implemented as a widget.
This leads to the question of why not implement the win-
dow widget on the client side as well? Should a window
enforce a security policy and provide means to protect ac-
cessibility?

J. Shapiro et al. [22] answer the latter question with yes.
They argument that clients should not decide by themselves
where they are placed on screen and therefore, are not able
to arbitrarily cover other clients. On the other hand, a user
may expect a client to behave exactly like this and to place
its windows in a special way. It does not seem feasible to
lock out those clients. The window system has no informa-
tion about what behavior a user expects from a particular
client. Only the user, not the window system, can classify
misbehaving applications. To protect accessibility against
malicious clients, the user needs a mechanism to freeze and
lock out a client at any time. The policies of window place-
ment, window stacking, and window decoration are no se-
curity mechanisms and therefore should not be attributed to
the server. Client-side window handling is a key point for
achieving exceptionally low complexity of the GUI server.

Note that the X Window System (X11) provides the con-
cept of a window manager, which is one central client that
manages the decorations and policies of all windows of an
X session. From the security perspective, the window man-
ager belongs to the X server because it has unlimited control



over all clients. In contrast, our usage of the term “client-
side window handling” refers to managing windows by each
client itself.

2.2 Buffers and views

In this Section, we describe Nitpicker’s mechanisms
for representing graphical applications on screen while en-
abling the client-side implementation of windows and other
widgets. Nitpicker deals with only two kinds of objects:
buffers and views.

A buffer is a memory region that holds two-dimensional
pixel data. The memory region is provided by the client
and imported into Nitpicker via shared memory. The pixel
format of every buffer is equal to the pixel format of the cur-
rent screen mode. Nitpicker does not perform color-space
conversion because converting color spaces is no security-
relevant functionality. Each client must be aware of the
pixel format provided by Nitpicker.

Nitpicker has no notion of windows. A window is ex-
pected to have window decorations and policies, for exam-
ple a window can be moved by dragging the window title
with the mouse. Nitpicker provides a much simpler ob-
ject type that we call view. A view is a rectangular area on
screen presenting a region of a buffer. Each view has an ar-
bitrary size and position on screen, defined by the client. If
the view’s size on screen is smaller than its assigned buffer,
the client can define the viewport on the buffer by specify-
ing a vertical and horizontal offset. Note that there may ex-
ist multiple views on one and the same buffer whereas each
view can have an individual size and position on screen and
presents a different region of the buffer. Each time a client
changes the content of a buffer, it informs Nitpicker about
the affected buffer region. Nitpicker then updates all views
that display the specified buffer region. Views may over-
lap on screen. A client can define the stacking position of
a view by specifying an immediate neighbor in the view
stack. Each view can optionally be entitled by the client by
specifying a text string.

Each client owns private name spaces of the buffers and
views it created. No client can access the objects of another
client. While each client manages the local stacking order
of its views, the global stacking order of all views is only
known to Nitpicker. This fulfills our initial security goal
that one client can neither obtain information about other
clients nor manipulate other clients.

2.3 Input handling

The buffers and views mechanism presents clients on
screen and let them communicate to the user. For enabling
the save communication in the other direction—from the
user to the client—Nitpicker needs to route mouse and key-

board events to the addressed client while hiding the user
input from other clients (e. g., spyware).

Each client receives input events only if they refer to one
of its views. Among all views, there is one focused view
that represents the keyboard input focus. Only the user se-
lects the focused view by mouse click. No client can define
the focused view. Nitpicker routes key strokes only to the
focused client—the client that owns the focused view. The
focused view does not need to be the topmost view. It may
be completely covered but it still defines the routing of input
events.

Input events contain only device-level information. Key
strokes are reported as consecutive press and release events
supplied with the corresponding hardware scancode. There
is no support for high-level information such as the Unicode
of a character, the keyboard layout, and the state of modifier
keys because such functionality is not required to enforce
security. Analogous to the pixel format of buffers, clients
must be aware of the meaning of hardware scancodes.

With the exception that a mouse-press event selects a
new focused view, mouse buttons are handled like other
keys with a defined scancode. Mouse motion and scroll
events are reported to the view under the mouse cursor, but
only if this view belongs to the focused client. This policy
prevents other clients from observing mouse gestures by the
user.

If the user moves the mouse while a mouse button is
pressed, Nitpicker reports all mouse motion events and the
finishing mouse release event to the view that received the
initial mouse-press event. This clears the way for client-
side window handling. For example, if the user enlarges
a window by dragging a window resize border, the mouse
cursor constantly leaves the view area of this window. We
ensure that the referred window is able to catch all events
that belong to the resize operation.

There are two magic keys that are exclusively in use by
Nitpicker and never can be used by clients. Clients do not
receive events about these keys. The Kill key is used to
freeze the current state of the view layout and let the user
pick a client to lock out from the Nitpicker session. It is
the emergency brake for a misbehaving client. The other
key that we call X-ray will be explained in the following
Section.

2.4 Trusted path

Buffers and views alone are not sufficient to uncover Tro-
jan Horses. The user needs a way to clearly identify the
client with which he is interacting. In the following, we ad-
dress the problems of what textual information should be
used to describe a client and how to present labeling infor-
mation on screen while keeping the user interface flexible
for a broad use.



Commodity window systems such as X11 let clients
choose the text to label a window. This enables nice-
behaving clients to be as expressive as possible. For Tro-
jan Horses however, this policy is an ideal opportunity to
attack. In multi-level secure systems as targeted by Trusted
X [13], labeling information is required to identify the valid
classification level in an unforgeable way. On a system
with support for secure booting, a trusted loader could pro-
vide the labeling information for authenticated clients. We
want to support both, expressive textual information pro-
vided by the client (untrusted label) and unforgeable label-
ing that represents underlying policies (trusted label). Con-
sequently, a complete label in Nitpicker is a concatenation
of the trusted label and the untrusted label. Therefore, the
first part of the label contains the most sensitive information
and is required to be always visible.

Traditionally, labeling information is displayed in win-
dow titles. EWS also relies on this way while mentioning
that there may be windows without a title at all or a window
title may be covered by other windows. In [12], Epstein
introduced techniques to maximize the visibility of label-
ing information. One option is to add an additional border
that contains labeling information on all four sides of the
window. While this technique is feasible for targeted multi-
level secure systems, it consumes precious screen space and
limits applications. Windows without the labeling border
are not possible by definition.

All the presented label-placement strategies do have one
problem in common: A Trojan Horse can mimic a complete
desktop by creating a window that is bigger than the whole
screen and placing the window in a way that all window
controls are outside of the screen area. Such a fullscreen
window could present a picture of a trusted client, including
the faked labeling information. This example illustrates that
we need to preserve a dedicated screen space for presenting
labeling information only. The DOpE window server uses
a region at the top of the screen for displaying information
about the currently focused window. This area cannot be
covered by windows and the information is always visible.
However, the top of the screen is not in the focus of the
user when he interacts with windows and he may miss to
pay attention to the labeling information. We desire a more
noticeable way to present labeling information.

Another idea to preserve a unique capability for present-
ing labeling information is to cut the color space into two
regions. The currently focused client and all labeling in-
formation is presented in full color while the brightness of
all other clients is dimmed. This guides the user’s attention
to one bright spot on the screen that displays one clearly
visible communication partner at a time. Dimming is im-
plemented in the Exposé function of Mac OS X [1] and in
EWS.

For Nitpicker, we combine the reserved area and dim-

ming techniques with a new label placement strategy:
Floating labels. Nitpicker dimms all views that do not be-
long to the focused client. All views are surrounded by a
thin bright border. The focused view is additionally high-
lighted by a border of a different color. In contrast to ex-
isting label placement strategies, Nitpicker analyzes the ar-
rangement of visible views and places all labels in a way
that they are visible. Nitpicker chooses the topmost position
within the view where the complete label is visible. If the
label cannot be completely displayed, it is placed in a way
that the first—most important—part of the label remains
visible. Labels float over their corresponding view while
always covering a part of the view’s content. All labels are
drawn in the same color as their corresponding view border
and feature a black outline so that they are clearly readable
on any background color. Because of the maximum bright-
ness of the label text, a dimmed view can never mimic or
faze a label because it is doomed to paint gray instead of
white. When looking at the screen, the most noticeable in-
formation are the view borders, the labels and the focused
view. Similar to DOpE, a bar at the top of the screen dis-
plays the information about the focused view.

In MLS systems, Nitpicker could tint unfocused views
of different classification levels with different colors. For
application areas where extremely paranoid security poli-
cies are needed, the dimming may completely blend out the
content of unfocused clients. Just for the sake of nitpick-
ing, we must consider that the dimming technique does not
prevent Trojan Horses from faking trusted clients that use
only dark colors. Still, the view borders and labels cannot
be faked.

There are other application areas, where productivity is
needed. For example, a user wants to watch a full-color
movie while coding. In this scenario, dimming would re-
duce inspiration and consequently, lower his efficiency. For
this, we introduce a way to toggle two modes by using a
magic key. In Flat mode, no labels, no borders and no dim-
ming is displayed. The only visible part of Nitpicker is a red
shaded bar at the top of the screen that displays the labeling
information of the focused view. In X-ray mode, dimming,
floating labels, and the view borders are active. The bar at
the top of the screen is shaded gray, signalling that X-ray
mode is active. The toggling between both modes can only
be performed by the user. However, clients can request the
currently active mode. If a security-sensitive client detects
Flat mode, it should ask the user to switch to X-ray mode
before it starts processing sensitive data. Passwords should
never be entered in Flat mode. For daily use at home or
in productive environments, Flat mode may be default and
X-ray mode will be used occasionally to perform sensitive
tasks, for example bank transactions. In contrast, for highly
secure systems, switching to Flat mode could be disabled.



Buffers

Views

Figure 2. One buffer per view.

2.5 Bring Nitpicker to life

After describing raw mechanisms, we outline two ways
of implementing a window system on top of them.

The straight forward approach for implementing a win-
dow system using buffers and views is to render each win-
dow into a dedicated buffer and create one view for dis-
playing the buffer on screen. Figure 2 illustrates this ap-
proach, which basically corresponds to the implementation
of EWS and Apple Quartz. The obvious advantage is sim-
plicity. The performance of moving windows and changing
the stack layout is great because no rerendering of windows
is needed in such situations. The performance only depends
on the blitting operation of Nitpicker. For resizing win-
dows, reallocation of the buffer and a new render process
is needed. Of course, the buffer-per-view approach implies
high memory requirements. Each window requires a buffer
of the window’s size regardless of whether the window is
visible or covered by other windows. The authors of EWS
argument that modern graphics cards provide an abundance
of memory. On the other hand, one can argue that graph-
ics memory should be available to applications instead of
the window system. Additionally, when looking at mobile
platforms and embedded devices, graphics memory is a pre-
cious resource.

Another way to deploy Nitpicker’s mechanisms is to use
only one buffer and render a complete windowed desktop
into this buffer. The client is indeed a window system by it-
self. In the following, we use the term client window to en-
title a window on a desktop managed and rendered entirely
by the client. Instead of using one view to make the whole
buffer visible on screen, we create one view for each client
window. Each view is positioned exactly to the geometry
of its corresponding client window. Consequently, the set
of views reveal the part of the buffer that is occupied by the
client windows. Furthermore, we keep the stacking order of
views consistent with the stacking order of the client win-
dows by applying all state changes of the client windows

Buffers

Views

Figure 3. Two window systems as clients.

to their corresponding views, too. For example, when the
client raises a client window, it also raises the correspond-
ing view at the same time. If all state changes of client
windows are consistently applied to Nitpicker’s views, the
stacking layout of the views is equal to the stacking layout
of the client window system.

If multiple client window systems come into play as
illustrated in Figure 3, each client window system manages
its local desktop and its local stack of views while isolation
between clients is preserved. Nitpicker alone knows the
global stacking order that consists of the interlocked view
stacks of all clients. Consequently, each protection domain
in the system can implement a custom window system with
the desired functionality. This technique and a number
of applications are described in more detail in [15]. With
regard to memory consumption, this technique scales
well with the number of windows on screen because all
windows of one Nitpicker client are using one and the same
buffer. On the other hand, moving windows and changing
the stacking layout require the client to refresh the affected
areas on its local desktop. This makes the client more
complex and involves costly rendering operations.

Nitpicker enables the usage of both techniques by dif-
ferent clients at the same time. A Nitpicker client can im-
plement the window handling policy for single windows by
itself while another client can be a full-fledged window sys-
tem that manages a number of sub-clients and thus, provid-
ing convenience to application programmers at the cost of
increased complexity.

2.6 Drag-and-drop

Drag-and-drop is a widely used paradigm to transfer data
from an application to another by dragging an item with the
mouse. Nitpicker does not need to provide support for drag-
and-drop between views of one client. Proprietary drag-
and-drop protocols can be used, thanks to the input routing



Source
Client

Target
Client

Negotiator

Nitpicker(1) PRESS

(2) TRANSPORT MODE

(3) MIME-TYPE LIST

Figure 4. Picking an item.

Source
Client

Target
Client

Negotiator

NitpickerMOTION

(1) POINTED
APPLICATION

(2) PERMIT

(3) FLOATING

(4) REQUEST TYPES

Figure 5. Dragging the item.

policy, described in Section 2.3. More challenging is the use
of drag-and-drop for establishing communication between
different clients of Nitpicker.

In [22], J. Shapiro proposed a drag-and-drop proto-
col and multi-level-security (MLS) format negotiation for
EWS. The proposed solution relies on the capability con-
cept of EROS. It has slight shortcomings such as the lack
of user feedback from the target client during the dragging
phase. In this section, we present a drag-and-drop protocol
that is derived from EWS and refined for Nitpicker.

Communication via drag-and-drop is restricted by the
action of the user and global policy, for example the per-
mitted information flow in a MLS system. We introduce
a dedicated component—the negotiator—for representing
the global policy.

Our drag-and-drop protocol consists of three phases:
Picking an item at the source client, dragging the item over
the views of potential target clients, and releasing the item
at the target client.

Picking an item (Figure 4): When the user clicks on a
view, only the client knows the meaning of the clicked ob-
ject. If the selected object is drag-able, the client tells Nit-
picker about the special meaning of this mouse transaction
and the mouse cursor is set to transport mode. The client
deposits a list of MIME types at the negotiator, who may
filter the list.

Dragging the item (Figure 5): While the mouse is
moved in transport mode, the user expects feedback from
the potential target client. Each time, the mouse cursor
crosses a view border, Nitpicker tells the negotiator about
the new pointed client (1). In turn, Nitpicker receives the
policy decision about the information flow from the source
to the target client (2). If permitted and the user moves the
mouse, Nitpicker sends motion events to the source client
and floating events to the potential target client (3). When a

Source
Client

Target
Client

Negotiator

Nitpicker(2) RELEASE

(1) ACCEPT        

(3) DROP

(4) REQUEST TYPE(5) POLL TYPE
AND SUBMIT

Figure 6. Releasing an item.

potential target client receives floating events, it can request
the offered list of MIME types at the negotiator (4). The
negotiator denies the request if the client is not equal to the
currently pointed client as told by Nitpicker. If the potential
target client receives the list of MIME types and a type is
supported, it gives feedback to the user.

Releasing the item (Figure 6): When the mouse button
is released, Nitpicker tells the negotiator that the user
accepts the transaction (1). Subsequently, Nitpicker sends
a release event to the source client (2) and a drop event
to the target client (3). The target client can now request
one MIME type at the negotiator and supplies a target
memory buffer via shared memory (4). When the source
client receives the release event, it polls the requested type
information at the negotiator and, in turn, transfers a source
memory buffer with the payload to the negotiator (5). Now,
the negotiator can copy the payload from the source to the
target memory buffer and confirm the transaction.

Nitpicker neither deals with type negotiation, nor imple-
ments the policy of information flow, and is not involved
in payload transfer. The whole job of Nitpicker during a
drag-and-drop transaction is to supply input events to both
clients and the negotiator. The implementation of the nego-
tiator is highly platform-specific whereas Nitpicker’s mech-
anisms are the same for all potential target platforms.

There is one low-bit-rate communication channel from
the target client to the source client. The target client could
encode data in the actual decision of what type from the
MIME type list it requests. However, the proposed protocol
keeps the involved clients anonymous and the channel is
bounded by user action.

Beside drag-and-drop, the most popular mechanism to
transfer information among applications is cut-and-paste.
In contrast to drag-and-drop, which requires support by the
GUI as described previously, cut-and-paste can be imple-
mented aside the GUI server. Clients can directly communi-
cate with a clipboard component that enforces the policy of
information flow and performs format negotiation. There-
fore, we do not discuss cut-and-paste within this paper.



2.7 Resource management

A server that allocates resources on request of a client
is vulnerable to denial-of-service attacks. One malicious
client can exhaust server-side resources and reduce the qual-
ity of other clients and even make the server unavailable.

In the case of Nitpicker, critical server-side resources are
the heap that holds client-specific data structures and the
processing time that is consumed to serve a client. For pro-
viding robustness against heap exhaustion, a client must do-
nate memory to Nitpicker. If a client requests the creation of
a new view, Nitpicker returns an out-of-memory error. The
client resolves this error by donating a memory region to
Nitpicker. Thereafter, the memory area is accessible for Nit-
picker only and the client cannot revoke this memory area
from Nitpicker. Nitpicker uses this memory region exclu-
sively for this particular client and frees the memory region
on client exit.

Nitpicker consumes CPU time on request of its clients.
Serving a buffer refresh request requires a significant
amount of processing time and bus bandwidth because
pixel data must be copied. Long-taking atomic operations
may delay other clients and the used CPU resources could
wrongly be accounted on Nitpicker. With our past research
on the DOpE [14] real-time window server, we addressed
these problems by introducing redraw dropping and redraw
splitting. These techniques can be applied to Nitpicker as
well.

3 Target platforms

The design of Nitpicker is applicable on all platforms
that provide isolation between security domains. These
platforms reach from virtual machine monitors (VMM) pro-
viding coarse-grained isolation of virtual machines (VM) to
fine-grained multi-server OSs.

VMMs such as VMware [9] enable the execution of mul-
tiple guest OSs on one host OS at the same time. However,
there exists no convenient way of user interaction with mul-
tiple VMs. The graphical output of different VMs is either
displayed in separate windows of a host window system or
in separate virtual consoles. With Nitpicker running on the
host OS and exporting its client interface as a network ser-
vice, guest OSs are able to use the view mechanism via a
virtual network device. The guest OS could run a service
that forwards window state changes to Nitpicker and there-
fore, achieves a tight integration of its GUI with other guest
OSs running on separate VMs. Still, isolation between dif-
ferent guest OSs is maintained.

Hypervisor architectures such as the Xen VMM [11]
support the execution of multiple isolated (para-) virtual-
ized OSs. In [16], the developers of Xen describe tech-
niques for the reuse of legacy drivers in dedicated virtual

machines and give an outlook toward Xen as multi-level se-
cure system. As Xen’s primary focus is server consolida-
tion, the supported device families are network and mass-
storage devices. However, the mechanisms for supporting
legacy drivers are suitable for video, too. Nitpicker, exe-
cuted within an I/O isolation space, could be one special
virtual video device that multiplexes the graphical output of
multiple VMs and performs the access to the physical video
hardware. The upcoming Windows Virtualization Archi-
tecture [6, 20] envisions a microkernelized hypervisor that
executes drivers within de-privileged protection domains
alongside unmodified legacy OSs and protected secure ap-
plications. According to [7], such applications will have
only limited GUI support (e. g., no support for overlapping
windows). Nitpicker however, could provide a seamless in-
tegration of such applications with the full-fledged GUI of
the Windows OS while preserving the required isolation.

Nitpicker could enhance the application area of remote
desktop protocols (RDP). For example, German embassies
deploy the Secure Inter-Network Architecture (SINA) [8]
for processing classified information. The SINA Thin-client
as end-user component handles different classification lev-
els by separate RDP sessions on virtual consoles—each vir-
tual console providing a full-screen GUI. Nitpicker could
make the user interaction with different classification lev-
els more natural by integrating them into one desktop. Nit-
picker’s capability of tinting views of different classification
levels with different colors and the floating-labels mecha-
nism provide a convenient way to distinguish different do-
mains.

Multi-server OSs such as EROS [21] deploy confine-
ment to decompose OS functionality into small components
that can be evaluated independently. For EROS, there ex-
ists EWS [22] as GUI. In comparison to EWS, Nitpicker
provides the advantages of lower complexity and a higher
flexibility for applications. Compatibility to EWS could be
maintained by executing EWS as client of Nitpicker. Dif-
ferent compartments could even use dedicated instances of
EWS. However, the biggest strength of Nitpicker—the sup-
port for legacy window systems as clients—remains largely
unused because EROS provides no means to execute legacy
software. Coyotos [2] as the successor of EROS will pro-
vide support for legacy software by a Linux emulation layer.
When Coyotos supports X11, Nitpicker would do well with
integrating X11-based legacy software with EWS windows.

4 Implementation

Without constraining the general applicability, we im-
plemented the presented design for one concrete platform
to prove its concept, observe its performance, and evaluate
the source-code complexity of an actual implementation.

The basis platform was provided by the L4/Fiasco [18,



19] microkernel that enables us to safely execute one or
multiple L4Linux kernel servers [17] along with native L4-
based applications at the same time. All L4 applications—
including L4Linux—are running in user mode and are ex-
ecuted within isolated protection domains. Communica-
tion between protection domains is performed by L4 inter-
process communication (IPC) only. For handling mouse
and keyboard input, we ported the input subsystem of the
GNU/Linux kernel version 2.6 to L4/Fiasco. We real-
ized the graphical output by using the VESA frame buffer
that is provided by the majority of modern graphics cards.
The used light-weight software graphics routines consist of
functions for drawing rectangles, blitting pixels, and ren-
dering text using a compiled-in font. The rectangle draw-
ing function is used for painting the view borders in X-ray
mode. The blitting function supports solid, dimmed, and
masked pixel transfer. The masked mode is used for the
mouse cursor that is implemented as a special view that
stays always on top.

To evaluate the support for legacy applications, we
ported two legacy window systems—DOpE and X11—to
Nitpicker (Figure 7). For porting DOpE, we added 160
lines of support code, including the replacement of DOpE’s
screen and input drivers and the propagation of window
placement information to corresponding views. For the sup-
port of X11, we implemented drivers for screen (400 LOC)
and input (250 LOC) as modules for XFree86 [10]. We
propagate window events from X11 to Nitpicker by using
a custom X11 client (200 LOC) that scans all windows and
registers itself as an event handler for window events at the
root window. We did not require changes of the X server
at all. X11 and DOpE client applications are executable in
this setup without modification. Figure 7 displays Nitpicker
in X-ray mode with X11 and DOpE as clients. Note that the
translucency effect, which is implemented by DOpE does
not display X11 windows. DOpE has no access to data of
the X11 session and therefore, cannot incorporate X11 win-
dows for the computation of the translucency effect.

5 Evaluation

At the beginning of Section 2, we introduced low com-
plexity as first-grade design goal. Our implementation of
Nitpicker consists of merely 1,500 human-written lines of
C code (LOC). This is only a fraction of EWS’s size (5,400
LOC) and an order of magnitude smaller than Trusted X
(30,000 LOC) and X11 (> 80,000 LOC without drivers).

The prime reason for the small complexity in relation to
EWS as the most comparable GUI server is the client-side
window handling. Thanks to this design decision, Nitpicker
does not need to implement the policy for rearranging win-
dows. This eases the internal logic, leads to further simpli-
fication of the drawing primitives, and enhances the flexi-

Figure 7. Screenshot of Nitpicker.

bility of clients, which can implement GUI paradigms such
as cascaded menus without special support from Nitpicker
For example, the scroll-able menus of WindowMaker and
virtual desktops work with X11 on Nitpicker exactly in the
same way as on native X11.

An interesting side aspect regarding source-code com-
plexity is the considerable amount of generated code that
Nitpicker as well as EWS rely on when using IDL for de-
scribing the client interface. Whereas the client interface
description of Nitpicker consists of merely 50 lines of IDL
code, the generated stub code comprises about 1,000 lines
of C code. Comparing this number to the complexity of the
human-written code highlights the critical role of compilers
and tools for secure systems.

We estimated Nitpicker’s performance by comparing the
CPU demand of DOpE running as Nitpicker client against
native DOpE. In both scenarios, we stressed DOpE by dis-
playing four animations of the size of 320x240 pixels at a
rate of 25 frames per second while permanently generating
artificial redraw requests for another DOpE window. For
the tests, we used an Intel Celeron PC clocked at 900 MHz.
Nitpicker does not require additional copying of pixels. We
expected DOpE on Nitpicker to perform slightly worse than
native DOpE because of two additional context switches for
each redraw operation and a computational overhead for
traversing Nitpicker’s view stack. In X-ray mode, the ad-
ditional load raises up to 25 percent. This is caused by the
dimmed blitting function that is not optimized for perfor-
mance, yet. When switching to Flat mode, the additional
load drops to less than one percent. Although this is just
a showcase, the observed low overhead matches our prece-
dent estimations and indicates the feasibility of Nitpicker’s
design with regard to output performance.



Nitpicker

DOpE

L4Linux

Mozilla
Thunderbird

X Window System

GnuPG 
Proxy L4GnuPG

Video Device Input DevicesHardware

Trusted
computing
base

Figure 8. Application scenario.

5.1 Application scenario

For highlighting the benefit of Nitpicker in conjunction
with widely used commodity applications, let us present an
application scenario.

Mail readers such as Mozilla Thunderbird are popular
because of their rich features (e. g., spam filtering, powerful
searching functions) and good usability. This convenience
comes at the cost of an enormous complexity of the appli-
cation and the needed OS support. With regard to the con-
fidentiality of private keys for signing emails, such appli-
cations are a nightmare. For the concrete example of us-
ing Mozilla Thunderbird on the GNU/Linux platform, the
complexity of the Linux kernel, the privileged daemon pro-
cesses, the X window system, Mozilla Thunderbird and
concurrently running user processes of the same user ac-
cumulate to millions of lines of code that potentially put the
secrets of the user at risk.

In fact, only a small fraction of this code—the GNU Pri-
vacy Guard (GnuPG) [4]—actually needs the private keys
for operation. We ported GnuPG to the L4 platform, cre-
ating L4GnuPG, and complemented it with a trusted text
viewer. We interfaced L4GnuPG with Thunderbird by cre-
ating a L4Linux proxy process that redirects Thunderbird’s
calls of GnuPG to L4GnuPG. L4GnuPG uses DOpE as
its widget set, which is running within an isolated address
space. In this scenario, L4GnuPG is the only process in the
whole system that can access the confidential signing key
of the user. Figure 8 presents an overview about the compo-
nents of this scenario. When the user activates the signing
function of Thunderbird, our L4Linux proxy process trans-
fers the email to L4GnuPG. L4GnuPG presents this email
in a DOpE window that is displayed within a correspond-
ing view of Nitpicker. The user can now decide to sign
the email or cancel the operation. If he decides to sign the
email, L4GnuPG requests a pass-phrase, signs the email and
transfers the result to Thunderbird via the L4Linux proxy

Mozilla

Terminal

orphaned 
area

Terminal

Mozilla

Terminal

Mozilla

Figure 9. Orphaned area on screen.

process.
In the presented scenario, the confidentiality of the sign-

ing key depends on only 105,000 LOC including L4/Fiasco
(15,000 LOC), trusted L4 services (35,000 LOC) and
L4GnuPG (55,000 LOC). The isolation of the legacy X11
window system and the GUI of the trusted application de-
pends only on the L4/Fiasco kernel and Nitpicker (1,500
LOC). We obtain the powerful features and great usabil-
ity of a commodity application while extremely minimaliz-
ing the trusted computing base (TCB) of a security-sensitive
function with regard to its GUI. The scenario underlines the
biggest strengths of Nitpicker: low complexity and the sup-
port of legacy graphical user interfaces.

5.2 Current limitations

After presenting the strengths of Nitpicker, we review
the limits of our current implementation.

Nitpicker attaches exactly one label to each view. There
are view layouts that leave orphaned areas unlabeled on
screen (Figure 9). Although the dimming technique in
X-ray mode prevents confusion about the focused view, a
shading policy as described in [12] could be deployed to
encounter such cases by blanking out orphaned areas. This
will be implemented in a future version.

Nitpicker performs graphical output via software graph-
ics routines. Making hardware-accelerated graphics usable
by Nitpicker and untrusted clients at the same time is a chal-
lenging problem and will be an object of our future work.

6 Related work

This section complements Section 3 with related work
about techniques and approaches that inspired the design of
Nitpicker.

J. Epstein addressed the problem of expressive and
unique labeling of windows for the Trusted X11 in [12].
Beside estimating different labeling techniques for mark-
ing classified information, he introduces a technique to de-
tect and blank out orphaned window areas. The dimming
of non-focused windows was inspired by Apple’s Exposé
feature in Mac OS X. J. Shapiro described the dimming



of unfocused windows for EWS in [22]. Apple Quartz is
an existing implementation of client-side window handling.
It is used for integrating X11 with the Aqua GUI of Mac
OS X. The X server, provided by Apple, enables the use
of any legacy window manager (e. g., WindowMaker) for
managing the X windows. Apple significantly changed the
XFree86 source base. Each X window is rendered into a
dedicated pixel buffer. In contrast, we did not change the X
server at all and use only one buffer for all X windows.

7 Conclusion

With the work described in this paper, we hope to ad-
vance the discussion of GUI-related security mechanisms of
operating systems a step further. With Nitpicker, we min-
imized the complexity of the security-sensitive GUI server
to only 1,500 lines of C code by consequently moving non-
security-related functionality from the GUI server to the
clients. The achieved low complexity is only a fraction of
existing approaches.

When running on a host OS that provides isolated protec-
tion domains, Nitpicker maintains the isolation of its clients
to prevent applications from spying at each other by ex-
ploiting GUI server functionality. In contrast to todays GUI
servers, which expose user input to any application, Nit-
picker protects the user from spyware by routing user in-
put to exactly one focused client at a time. Provided an
OS that supports secure booting and client authentication,
Nitpicker enables the user to clearly identify each client ap-
plication via a combination of dimming and labeling tech-
niques while preserving a high flexibility of client GUIs.
This enables the user to identify and disarm Trojan Horses.
Thanks to the extremely low complexity and the deployed
resource management, Nitpicker is robust against denial-of-
service attacks driven by client applications and thus, can
guarantee the service of sensitive client applications with re-
gard to their GUI. At that time, we facilitate the support for
existing legacy applications using the flexible buffers and
views technique. This enables the further use of commodity
window systems and their application alongside the safe ex-
ecution of low-complexity security-sensitive applications.

Our implementation proves the feasibility of the pre-
sented design. We frequently use our custom software stack
for public talks and lectures. At publishing time of this pa-
per, the implementation of Nitpicker will be publicly avail-
able under the terms of the GNU General Public License.

We thank Jonathan S. Shapiro for sharpening our minds
with regard to (more or less) covered channels and resource
management. Furthermore, we want to thank Alexander
Warg for the valuable and frequent discussions during the
design of Nitpicker.

References

[1] Apple Mac OS X website. URL:
http://www.apple.com/macosx/.

[2] Coyotos website. URL:
http://www.coyotos.org.

[3] Fresco website. URL:
http://www.fresco.org.

[4] GNU Privacy Guard website. URL:
http://www.gnupg.org.

[5] Intel Vanderpool technology website. URL:
http://www.intel.com/technology/
computing/vptech/.

[6] Microsoft’s Virtualization Architecture. TWAR05013 at
WinHEC 2005.

[7] NGSCB presentation at WinHEC 2004. URL:
http://download.microsoft.com/download/1/

8/f/18f8cee2-0b64-41f2-893d-a6f2295b40c8/

TW04008_WINHEC2004.ppt.
[8] SINAvpn website. URL:

http://www.sinavpn.com.
[9] VMware website. URL:

http://www.vmware.com.
[10] XFree86 website. URL:

http://www.xfree86.org.
[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium
on Operating System Principles (SOSP), Oct. 2003.

[12] J. Epstein. A prototype for Trusted X labeling policies. In
Proceedings of the 6. Annual Computer Security Applications
Conference, Dec. 1990.

[13] J. Epstein, J. McHugh, H. Orman, R. Pascale, A. Marmor-
Squires, and B. D. et al. A high assurance window system
prototype.

[14] N. Feske and H. Härtig. Demonstration of DOpE — a Win-
dow Server for Real-Time and Embedded Systems. In 24th
IEEE Real-Time Systems Symposium (RTSS), pages 74–77,
Cancun, Mexico, Dec. 2003.

[15] N. Feske and C. Helmuth. Overlay window management:
User interaction with multiple security domains. Technical
Report TUD-FI04-02-März-2004, TU Dresden, 2004.

[16] K. Fraser, S. Hand, I. Pratt, and A. Warfield. Safe Hardware
Access with the Xen Virtual Machine Monitor. In Proceed-
ings of the 1st Workshop on Operating System and Architec-
tural Support for the on demand IT InfraStructure (OASIS
2004), Boston, MA, Oct. 2004.

[17] H. Härtig, M. Hohmuth, and J. Wolter. Taming Linux. In
Proceedings of the 5th Annual Australasian Conference on
Parallel And Real-Time Systems (PART ’98), Adelaide, Aus-
tralia, Sept. 1998.

[18] M. Hohmuth. The Fiasco kernel: System architecture. Tech-
nical Report TUD-FI02-06-Juli-2002, TU Dresden, 2002.

[19] J. Liedtke. L4 reference manual. Technical report, Sept.
1996. RC 20549, IBM T. J. Watson Research Center.

[20] M. Peinado, P. England, and Y. Chen. An Overview of
NGSCB.

[21] J. S. Shapiro. EROS: A Capability System. PhD thesis, Uni-
versity of Pennsylvania, Apr. 1999.

[22] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia.
Design of the EROS Trusted Window System. In Proceed-
ings of the 13th USENIX Security Symposium (2004), pages
165–178, 2004.


