
Genode FX: an FPGA-based GUI with
Bounded Output Latency and

Guaranteed Responsiveness to User Input

Norman Feske Matthias Alles
Genode Labs University of Kaiserslautern

<norman.feske@genode-labs.com> <alles@rhrk.uni-kl.de>

Abstract

This paper presents a composition of hardware and soft-
ware that forms a fully fledged windowed GUI on a single
FPGA plus memory chip. The solution scales with the full
range of Xilinx FPGAs. But even on the low-cost Xilinx
Spartan3A FPGA, the GUI operating at a 16bit resolution
of 640x480 is able to guarantee a bounded output latency of
only 220 ms and a guaranteed response time to user input
of less then 20 ms. The paper covers both an overview of
our custom hardware design and our software algorithms
that make these guarantees possible.

1 Introduction

Field-programmable gate arrays (FPGA) are becoming
increasingly popular in embedded controlling devices and
high-end measurement devices. In contrast to conventional
digital signal processors and micro controllers, FPGAs al-
low for creating application-specific system-on-chip (SoC)
solutions at moderate costs. Such SoC solutions are able to
consolidate signal processing, peripheral components, glue
logic, and even soft-core CPUs into one chip. Because
FPGAs can be arbitrarily reconfigured, the functionality of
the device can be updated without changing the physical
hardware. This clears the way for the cooperative design of
special-function hardware and software, and enables the im-
plementation of sophisticated functionality into the embed-
ded device, for example complex online analysis in addition
to the aggregation, storage, and monitoring of measurement
data.

The trend towards more complex embedded functional-
ity motivates the use of graphical user interfaces (GUI) and
touch screens instead of text-based LCD displays and but-
tons. For operating full-color pixel displays, there are dis-
crete graphics solutions available, for example 32-bit micro
controllers with an on-chip display controller. A natural al-

ternative approach to placing such a discrete chip onto the
PCB of an FPGA-based device is the integration of the GUI
into the FPGA. With Genode FX, this paper describes one
possible realization of this approach. Thereby, we have to
deal with two major challenges. First, there are real-time re-
quirements demanded by the applications. Controlling and
monitoring applications often rely on the timeliness of dis-
played information. Also, an immediate response to user
input is desired, in particular when using touch screens that
provides no tactile feedback to the user. The second chal-
lenge is the severe constraint of resources such as FPGA
slices, memory, and processing time.

The solution described in this paper addresses these chal-
lenges. Section 2 introduces our custom SoC design for
implementing interactive graphics into an FPGA. The ratio-
nale behind the design of our real-time GUI software stack
is detailed in Section 3. Section 4 describes the software im-
plementation, validates the design, and reports the achieved
performance on our custom SoC platform. It is followed by
a revision of related work concerning quality of service on
the GUI level in Section 5.

2 A system on chip for handling interactive
graphics

The hardware part of Genode FX is based on Xilinx’
Embedded Development Kit, which offers the designer a
large degree of freedom when designing embedded systems
on Xilinx FPGAs. Ready-to-use or custom cores can be
parametrized and plugged together to form the system that
best meets the designer’s requirements. Such cores can be
processors, interface controllers, timers, or embedded mem-
ory. Figure 1 gives a coarse overview of a Genode FX sys-
tem. The system consists of

MicroBlaze CPU The MicroBlaze is a RISC-like soft-core
CPU that can be customized at design time. It is pos-
sible to configure cache sizes, pipeline depth, floating-

1



VGA/DVI
controller

(Genode FX)

MPMC
memory
controller

MicroBlaze
CPU Timer

Interrupt
controller

PS/2
controller

(Genode FX)
TFT

Keyboard

Mouse

PLBv46

DDR2
RAM

Figure 1: Relationship between the Genode FX hardware compo-
nents.

point instruction support, and many other parameters.
For MicroBlaze software development, the GNU com-
piler collection is available.

Timer The timer allows to periodically interrupt the pro-
cessor.

PS/2 controller This custom controller is used to detect
user input from the mouse or the keyboard. Whenever
an event is detected, an interrupt is generated such that
the CPU can process the PS/2 packet.

Interrupt controller The interrupt controller collects the
interrupts from all interrupt sources in the system and
reports them to the CPU. In Genode FX, the interrupt
source is either the timer or the PS/2 controller.

Display controller Our custom VGA/DVI display con-
troller offers the required frame buffer capabilities. It
allows for a programmable video timing. The pixel
clock, however, has to be chosen at design time. Pixel
clocks of more than 100 MHz are possible, yielding
high resolutions (e. g., 1280x1024) at a 16 bit color
depth.

Multi-Port Memory Controller (MPMC) This core is
the interface to the DDR2 main memory of the system.
It allows multiple sources to access the main memory.

Processor Local Bus (PLB) All components are built
around the PLB, which allows the MicroBlaze to con-
figure the other cores and to access the main memory.

The MPMC allows multiple sources to access the main
memory. In Figure 1, it is connected to the PLB, to the
MicroBlaze, and to the custom display controller. The con-
nection to the MicroBlaze is used to fill its cache lines in
burst transfers without using the slower PLB. The display
controller uses the connection to the MPMC to fetch pixel

data in burst transfers. Arbitration between the memory-
access requests is performed within the MPMC and can
be customized. In Genode FX, the display controller has
the highest priority to prevent the pixel-fetch buffer from
becoming empty. All other requests are performed round
robin.

Note that Genode FX is not limited to a specific FPGA
family. The low-cost Spartan3 series as well as high-
end Virtex4 or Virtex5 FPGAs are supported. The Micro-
Blaze processor can also be replaced by the hardwired high-
performance PowerPC processors that is available in some
Virtex FPGAs. Furthermore, Genode FX is not required to
use DDR2 SDRAM via the MPMC. For early versions, we
used a custom dual-port SRAM controller.

3 Designing the GUI as resource scheduler

This section presents the design of our quality-of-
service-aware GUI software and explains the employed and
novel key techniques. The description is not specific for
Genode FX but meant to be equally applicable in the con-
text of general-purpose operating systems. Therefore, this
section fosters the use of the terminology found on such sys-
tems. We speak of the GUI server as the part of the software
stack that manages and arbitrates the access to physical re-
sources such as processing time, bus bandwidth, and input
devices. It serves potentially many GUI clients, which rep-
resent concurrently running applications. The GUI server
should manage physical resources in such a way that the
temporal requirements of all GUI clients are respected. Fur-
thermore, it must ensure a low response latency to user in-
put. To meet these requirements, we need to model the GUI
server as a real-time process that schedules and executes re-
drawing jobs.

To successfully plan ahead of time, a scheduler relies on
the knowledge of scheduling parameters, in particular the
execution time of each job, in advance of execution.

The classical approach for performing redrawing jobs,
however, relies on a tight interplay of the GUI server with its
GUI clients. To update a screen portion, the GUI server de-
termines the set of GUI clients that are visible at the screen
region and instructs each GUI client to redraw its visible
portion. In turn, each GUI client responds to the request by
invoking a sequence of graphical primitives composing the
client’s pixel representation at the GUI server. The set of
graphical primitives as supported by the GUI server com-
prises for example the drawing of lines, the output of text
strings, and the filling of polygonal shapes. Consequently,
the time needed to update a screen portion depends on the
number and type of graphical primitives as selected by each
GUI client to produce its pixel representation. Hence, the
GUI server cannot reason about the time needed to execute
the involved graphical primitives ahead of execution. From

2



the GUI server’s point of view, the execution time of each
redraw job is unbounded. Major commodity GUIs such as
the Windows XP GUI, Mac OS (until version 9), and the X
window system employ such a protocol.

3.1 Making worst-case execution times of
redrawing jobs predictable

A method to dissolve the dependency of the GUI server
from its clients during screen updates is to move each GUI
client’s graphical representation into the GUI server and
thereby enable the GUI server to autonomously reproduce
pixels out of the now server-locally stored model of the
client representation. This model can be based on raw pixel
data or on a higher-level abstraction such as a widget set
including buttons, menus, and other basic GUI elements.
Performing the transformation of each client’s GUI model
to pixels locally enables the GUI server to predict all graph-
ical primitives that are needed for any screen update and,
as a consequence, to estimate overall execution times of re-
drawing jobs in advance of execution.

The sequence of graphical primitives is a function of
both the known transformation of the GUI model to pix-
els and the actual window layout. The latter, however, may
have a significant influence on the required graphical prim-
itives but is not known at admission time of a GUI client.
This problem is best illustrated by the painter’s algorithm
as used by the Windows Vista’s Desktop Window Manager,
the Quartz window manager of Mac OS X, and the compos-
ite extension of the X window system.

Deficiency of the painter’s algorithm As a painter, the
algorithm produces the final image by painting all objects
ordered by their distance from the viewer, starting with
the rearmost (background) and finishing with the foremost
(top window). In the final image, window portions that
are covered by other windows get correctly over-painted
and are no longer visible. Combined with the use of al-
pha channels, which is comparable with applying layers of
watercolor with different translucencies to a canvas, this al-
gorithm provides maximum flexibility with regard to the
shapes of windows and their opacity. With regard to predict-
ing redraw-execution times however, this algorithm is not
well suited. Even though the sequence of graphical prim-
itives used by the Painter’s Algorithm can be determined
immediately prior execution, we cannot predict a realistic
redraw execution time for a specific GUI client at its admis-
sion time because the actual costs depend on the other GUI
clients and on the window layout, which is not fixed during
the lifetime of the GUI client. Therefore, the admission of
new GUI clients is based on an overly pessimistic worst-
case redraw-execution time assuming that all windows are

Target window Target window Target window

Target window Target window

Figure 2: Determining the visible portion of a window by succes-
sively clipping the window’s shape against each over-
lapping window.

covering each other and thus, must be painted for each re-
draw operation.

Decoupling redraw-execution times of different clients
To dissolve the inter-dependency of windows from each
other during the redraw of one particular window (target
window), the painting algorithm should limit its operation
to only the target window but should not paint any other
windows. This can be achieved by preceding the painting
operation by a geometric analysis that computes the target
window’s visible portion. The visible portion is determined
by successively cutting out the shape of each window in
front of the target window from the target window’s shape.
Such a technique was originally employed by most window
systems but current-generation commodity GUIs discarded
this approach in favour of executing the painters algorithm
via hardware-accelerated graphics.

Figure 2 illustrates this procedure. The resulting shape
is then used as clipping boundary while painting the tar-
get window to mask out all pixels that are covered by other
windows. The worst-case redraw-execution time for each
window corresponds to painting the window when fully ex-
posed and it is invariant toward the presence of other win-
dows and the window layout (ignoring the computational
overhead for the geometric analysis at this point). With
known temporal characteristics of the single graphical prim-
itives, this technique enables us to predict redraw-execution
times prior execution and, therefore, base the admission of
GUI clients on realistic worst-case execution times.

3.2 Local scheduling of redrawing jobs

With the satisfied precondition of known worst-case
redraw-execution times, the construction of the GUI server
as a periodic process clears the way for deploying the full
variety of well-understood admission and scheduling strate-
gies for such processes. In addition, the redraw-job sched-
uler can take the different characteristics of planned and

3



spontaneous redrawing jobs into account. Once admitted
for a defined window size and a fixed update interval, a
planned job as used by real-time media applications cor-
responds to a classical real-time job with its deadline being
implied by the update interval. A valid schedule for a set of
planned jobs can be obtained by using a standard algorithm
such as Earliest Deadline First (EDF).

In contrast, spontaneous jobs can be induced at arbitrary
times by any GUI client posting an update of its GUI model
or by user interaction. The occurrence of spontaneous jobs
is not predictable. Once triggered, such a job does not have
a deadline assigned but it should be processed as soon as
possible (best effort) without affecting planned jobs. A
classical best-effort GUI server handles spontaneous jobs
only and executes each job when it arrives at a blocking
synchronous client interface shared among all GUI clients.
In contrast, our real-time GUI server receives spontaneous
jobs via an asynchronous client interface, enqueues the in-
coming redraw-job requests into a redraw queue, and pro-
cesses redraw-queue elements when the planned schedule
permits execution. Because the GUI models for all clients
are locally known to the GUI server, each redraw-queue ele-
ment contains only the information about the corresponding
window and the window portion to be redrawn but does not
include graphical primitives.

3.2.1 Constraining priority inversion through artificial
preemption points

Executing (low-priority) spontaneous jobs during the time
left in the schedule of (high-priority) planned jobs, however,
raises a priory-inversion problem because once started, a
long-taking spontaneous job must first be completed before
the next planned job can be executed. This delay introduces
jitter and may corrupt the schedule of planned jobs. Thanks
to the locally known model of all client’s GUI representa-
tions as described in Section 3.1, we can apply a custom
technique called redraw splitting to overcome this problem.
Prior to the execution of a spontaneous job, we first estimate
its execution time based on the knowledge of the graphical
primitives needed for transforming the GUI model to pix-
els. If the spare time slot in the schedule is not sufficient to
execute the spontaneous job completely, the job gets subdi-
vided into smaller jobs addressing distinct screen portions
of the original job in a way that each sub job’s execution
time fits nicely into a spare time slot in the schedule.

3.2.2 Redraw queueing

Due to the unpredictability of spontaneous jobs that can be
issued by any GUI client at any time, the GUI server can
be confronted with overload situations. For example, a ter-
minal application may generate a large number of sponta-
neous jobs when scrolling through large text output. If the

GUI server is not able to process graphics operations fast
enough, subsequent jobs will stack up at the redraw queue
of the GUI server and render the GUI inaccessible until all
pending redraw operations are executed. Because this de-
lay is unbounded and depends on the behaviour of the GUI
clients, a malicious GUI client would be able to impose the
denial of service of the GUI server.

The key for tackling an unbounded population of the re-
draw queue lies in the characteristics of redrawing jobs. If
there exist multiple jobs in the redraw queue that refer to
the same screen region, only the computational result of
the most recent job is important whereas the intermediate
states as produced by the other jobs get successively re-
painted. Consequently, such intermediate jobs can be dis-
carded. Video players employ a similar approach for deal-
ing with situations for which the available processing time
is not sufficient for decoding all frames of a video stream. In
such situations, intermediate frames get dropped to yield the
remaining processing time to the most current frame. This
technique provides quality of service by trading the smooth-
ness of the video playback for the timeliness of the pre-
sented information and thereby prevents unbounded over-
load situations.

For the GUI server, we introduce an analogous tech-
nique that we call redraw dropping. In contrast to a video
player that performs frame dropping at the spatial granu-
larity of the whole video frame, a window system com-
poses the screen of a number of potentially overlapping
windows, for which redraw dropping can be applied indi-
vidually. For each incoming redraw job, the GUI server
searches for a pending job in the redraw queue that refers to
the same window. If such a pending job exists in the queue,
this job gets replaced by the compound of the existing job
and the incoming job. If both jobs refer to distinct regions
of the window, the resulting job will refer to the bounding
box of the original job and the incoming job. This way, a
once enqueued job for a particular window can successively
be enlarged by incoming jobs while staying in the redraw
queue. The maximum extent of the enqueued job, however,
is limited by the size of its corresponding window. Con-
sequently, the redraw queue’s size is bounded by the num-
ber of windows present on the screen, which prevents the
queue from overrunning. Furthermore, all redraw-queue el-
ements refer to different windows and thus to distinct screen
regions. Thanks to successive clipping as described in Sec-
tion 3.1, the actual execution time of each job correlates to
the visible portion of its window. The sum of the execu-
tion times of all enqueued jobs is bounded by the number of
pixels on screen. Therefore, our algorithm enables the GUI
server to inherently avoid overload situations and to guar-
antee a bounded worst-case latency for any graphical out-
put on screen. This worst-case latency is the time needed to
perform the redraw of the whole screen.

4



Our combination of redraw splitting with redraw drop-
ping enables the GUI server to streamline redraw operations
and input handling into one periodic process. It provides
response-time guarantees for user input including visual fo-
cus feedback and processes the redraw of all GUI clients.
The scheduling of redraw jobs is local to the GUI server
and thereby enables the use of a wide range of scheduling
strategies, for example by considering multi-threaded ver-
sus single-threaded operation.

3.3 Dealing with user interaction

The previous section presented how the characteristics
of redraw jobs enable the scheduler to apply a specially tai-
lored scheduling strategy leading to the prevention of over-
load situations by design. We can apply a similar technique
to handling user input.

Pointer devices such as mouses or tablets sample user
input at high rates (e. g., 16K bits per second for PS/2)
and generate a flood of motion events during mouse or sty-
lus movements. Each motion event is a spontaneous job
that requires event handling in the GUI server. This in-
cludes translating device-specific coordinates to screen co-
ordinates, moving the mouse cursor, determining the GUI
element under the mouse cursor by traversing meta data, vi-
sually changing the GUI element on changed mouse-focus,
and the routing of the event to the referred GUI client. Due
to the cost of these operations, a steady supply of user in-
put events at such a high rate can induce a high load to the
GUI server and its clients. The user, however, is only able
to perceive the resulting visual changes at a rate lower than
100 Hz. Consequently, for each perceived GUI state, the
GUI server may have underwent intermediate states that are
ignored by the user1 but produce system load.

By turning event handling into a periodic mode of oper-
ation, the overhead for handling high-rate user input can
be significantly reduced. Analogous to the redraw han-
dling, the first step is the decoupling of job submission (an
input device interrupt occurs) and execution (the GUI in-
terprets the event) by introducing a first-in-first-out queue.
Each time, an input event is generated by the input device,
the interrupt handler enqueues the event into a device-event
queue. Therefore, the insertion of device events happens
aperiodic but at a known maximum rate, which dictates the
required queue size.

At a low rate of 100 Hz, the periodic event-processing
thread of the GUI server interprets the batch of device
events currently stored in the queue. Due to the character-
istics of motion events, the batch contains large sequences

1 The high temporal resolution of input events as supplied by pointer
devices is required by only a few applications such as paint programs to
accurately digitize brush strokes. For such applications, the GUI server
should provide the raw stream of input-device events via a dedicated inter-
face.

of motion-only events that can be merged to only one event
by accumulating the motion vectors of successive motion
events. Consequently, the resulting number of input events
to be executed by the GUI server is bounded by the rate on
which the user can supply non-motion events such as but-
ton press or release events. Typically, this rate is not higher
than 100 Hz such that for each period, the GUI server must
handle only a few (empirically ca. 0 to 3) input events that
imply only negligible computational costs.

4 GUI software stack

The rationale as described in the previous section is
the result of our extensive practical experiments using the
DOpE real-time window server [4,5]. The core of this win-
dow server forms the basis for the Genode FX GUI software
stack. This section describes its most interesting properties
and reports on the practical experiences made.

4.1 Widgets as server-side client represen-
tation

Section 3.1 highlighted the need for server-side client
representations to enable the GUI server to process redraw-
ing jobs independent from its clients and thereby make the
job execution times predictable. The design space for a
server-side model of a client representation ranges from
pixel-based representations to high-level descriptions of the
GUI elements (widgets).

By using a pixel-based representation shared between
the GUI client and GUI server, the redraw functions in the
GUI server are simple pixel-copy operations whereas the
GUI client can freely express its visual appearance. This
approach is used for example by the Mac OS X Quartz en-
gine and the minimal-complexity Nitpicker GUI server [7].
The great flexibility for GUI clients and the simplicity of
the GUI server, however, comes at the cost of a high mem-
ory usage. Each window requires an equally sized pixel
buffer to store the representation, even when the window
is fully covered by other windows. Furthermore, this ap-
proach requires a tight interplay between the GUI server
and its clients for providing visual feedback to user interac-
tions. For example, to highlight the GUI element under the
mouse cursor, the GUI server has to provide mouse motion
events to the GUI client, which, in turn, determines the GUI
element at the mouse position, updates the corresponding
part of the pixel buffer, and then notifies the GUI server to
refresh the changed pixels on screen.

In contrast, when the GUI server implements the wid-
get set, functionality such as mouse-over focus and window
resizing can be handled locally in the GUI server without
involving the GUI client. With regard to memory-resource

5



usage, a server-side widget set is significantly more effi-
cient because a typical semantic description of a widget
consumes only a few bytes regardless of the actual size
on screen. For example, for representing a button widget,
the GUI server needs to store only its position, size, state,
and the button text, which consumes significantly less mem-
ory than the corresponding pixel-based representation. The
GUI server produces the pixel representation from the se-
mantic model only if the widget is visible on screen and
therefore provides a large potential for performance opti-
mizations based on window layout. For example, if a client
updates the text of a button, it pushes the new button prop-
erty to the GUI server, which stores it locally. The transfor-
mation to pixels, however, is only performed if the button
is not completely covered by other windows. If partly cov-
ered, the transformation costs are proportionally related to
the visible portion. Further arguments in favour of a server-
side widget implementation are fostered consistency and in-
teroperability between GUI clients because the GUI server
facilitates one common look and feel for all GUI clients.
However, as proven by the GNOME and KDE projects,
such properties can be provided by client-side libraries as
well.

With DOpE, we explored the design range by providing
a fully functional server-side widget set that also facilitates
the use of pixel-based client representations by the means of
a special widget type. The widget set consists of layout wid-
gets, which organize a number of child widgets according
to geometric rules, and leaf widgets, which represent the
actual state of the GUI client. Therefore, the GUI model
used for each GUI client is a tree of widgets of the fol-
lowing types. Window widgets consist of standard window
controls such as a title bar and resize elements and manage
exactly one child widget as its content. Grid widgets can ar-
range child widgets in rows and columns, whereas the size
of the rows and columns are determined based on the ge-
ometric constraints of the child widgets and client-defined
constraints (weights or fixes sizes). Container widgets en-
able the GUI client to freely position child widgets via pixel
coordinates. Frame widgets can hold one arbitrarily-sized
content widget, which can be larger than the frame’s dimen-
sions. In this case, the frame provides scrollbars to let the
user freely choose the view port on the content widget. For
expressing actual client state, DOpE provides labels, but-
tons, text entry fields, load displays, numeric scales, and
scrollbars as leaf widgets.

DOpE’s widget set is designed to enable GUI clients to
realize more complex GUI elements by composing these
basic widget types. For example, a tree widget can be re-
alized by combining nested grids with leaf widgets. In ad-
dition to the already mentioned leaf widgets, DOpE pro-
vides a widget type called vscreen that enables GUI clients
to use pixel-based representations shared with DOpE. Each

Figure 3: Screenshot of a demo application implemented with our
custom GUI software stack.

vscreen widget has an associated pixel buffer. The nor-
mal mode of operation is that a GUI client writes pixels
to the vscreen buffer and then notifies DOpE to update the
changed part of the buffer on screen. The screenshot shown
in Figure 3 displays the use of several widget types includ-
ing windows, buttons, scrollbars, and scalable vscreens.

4.2 Application programming interface

The decision of using widgets as server-side GUI model
was taken to broaden our experimental playground as much
as possible and thus, to enable the exploration of a num-
ber of GUI-server-related problems beyond quality of ser-
vice. One particular field of interest was the application of
a domain-specific language as client API for a GUI server.
In our previous work on GUIs, we observed that the use of
high-level script languages such as Tcl/Tk can drastically
reduce the GUI-related code complexity compared to the
use of binary interfaces. Using such a high-level abstraction
as client API of a GUI server raised interesting questions re-
garding the performance overhead on parsing textual com-
mands, the costs of communicating textual strings instead
of binary data between client and server, the complexity of
the server-side support code, and the utility value and con-
venience of a language as API. DOpE clients communicate
with the DOpE server by using textual such as

grid = new Grid()
button_1 = new Button(-text "OK")
button_2 = new Button(-text "Cancel")
g.place(button_1, -row 1 -column 1)
g.place(button_2, -row 1 -column 2)
win = new Window(-content grid)
win.open()

This sequence creates a window presenting two buttons ar-
ranged horizontally within a grid layout. Note that the GUI-

6



describing code is principally generic and does not con-
tain resolution-dependent physical pixel values, font param-
eters, or style attributes. It is up to the GUI server to trans-
late this semantic description of widgets and their topol-
ogy to physical pixels in a way that fits the target device
and the needs of the user best, for example by adhering
the look and feel as configured by the user. Each com-
mand is handled by DOpE as a nonblocking atomic op-
eration that returns immediately with either an error code
or a success indication. In contrast to Tcl/Tk, which is a
general-purpose script language, the DOpE command lan-
guage does not handle control flow or conditional execu-
tion. This design facilitates DOpE’s simple program logic
with regard to its client API and keeps the complexity of
the server-side command interpreter and the widget-support
code for the textual commands at less than 1,500 lines of
source code (SLOC). Unlike the X protocol, which trans-
ports a potentially high number of graphical primitives and
pixel data from the client to the server on each redraw opera-
tion, DOpE’s client API requires only few messages to com-
municate updates of its GUI model to the GUI server and
effectively decouples the client and the server for the most
of the time. After creating a window as done in the example
above, the further handling of its rearrangement on screen
(move, top, resize) and the management of mouse highlight-
ing and keyboard focus are locally handled by DOpE and do
not require any interaction with the client. The client gets
involved only when an event occurs for which the client sig-
nalled interest beforehand. For example, to respond to the
activation of a button by the user.

4.3 Resource scheduling

Each redraw request undergoes three stages that corre-
spond to different abstraction levels. First, a redraw request
is triggered by a client request (e. g., a client places a button
into a window) or by user input (e. g., the user moves a win-
dow). This request refers to the targeted window and gets
enqueued into the redraw queue by applying the redraw-
merging technique described in Section 3.2. If multiple re-
draw requests targeting the same window are issued at a
high rate, these requests get merged and reside as one re-
quest in the redraw queue. At the second stage, an indepen-
dent redraw process transforms the window referenced by
the redraw request to pixels. Enabled by the local knowl-
edge of the GUI model for any window on screen, DOpE
is able to generate the sequence of graphical primitives re-
quired to create the pixel representation. These graphical
primitives are essentially the drawing of scaled images, the
drawing of vertical or horizontal lines, and the output of
text. DOpE provides these graphical primitives via soft-
ware rendering that operates on a pixel back buffer in main
memory. Its widget rendering engine is designed such that

most pixels get touched only once during one transforma-
tion. However, there are cases for which one pixel gets
subsequently written multiple times. For example, when
drawing text on a button, the background of the button is
drawn first and then partially overwritten by the textual la-
bel. During the third stage, the result of the transformation
gets transferred from the pixel buffer to the frame buffer and
thereby becomes visible on screen.

On Genode FX, the costs for transforming the widget-
based GUI model to pixels is dominated by the memory
bandwidth. Thanks to the clipping and optimization tech-
niques of the widget-rendering engine, the number of mem-
ory accesses is roughly the same for each pixel (paint to
back buffer, copy back buffer to front buffer). Therefore,
we use a simple cost model as the basis for redraw schedul-
ing, which derrives the costs of a redraw request from the
amount of pixels that must be produced (request size) and
the bandwidth at which pixels can be generated:

processing time =
redraw request size

bandwidth
(1)

A further consequence of the approach is the inherent
double buffering of graphical output that completely avoids
displaying inconsistent GUI states that occur during the
transformation of the GUI model to pixels. Because the
mouse cursor handled in the second stage, it moves always
smoothly at the rate of the periodic redraw process and is
free from flickering artifacts. No hardware mouse cursor is
needed.

4.4 Control flow between GUI client and
GUI server

The original version of DOpE was used on a multi-
tasking OS where multiple GUI clients interact with the
GUI server via message-based IPC communication. This
version used to employ two threads, an RPC interface thread
for serving client requests and a redraw-processing thread.
The RPC interface thread dispatches incoming client re-
quests by operating on the server-side GUI model. Such
operations perform only little updates of data structures and
return immediately. As side effect of these operations, the
redraw queue gets populated with screen regions that need
to be updated. In contrast to the interface thread, the redraw-
processing thread is executed strictly periodic. In each pe-
riod, this thread handles user-input and processes redraw
operations. Because DOpE employs the user input handling
as described in Section 3.3, user-input handling causes only
negligible costs. The redraw processing, however, is the pri-
mary consumer of both processing time and bus bandwidth
and therefore, is subject to redraw scheduling within DOpE.

For Genode FX, we have turned the interaction between
client and server into a single control flow such that the GUI

7



server code is now a plain library to be linked with the GUI
client. Because both the GUI server code and the client
code are executed by the same thread, a Genode FX appli-
cation can be implemented without the need for an underly-
ing multi-threading kernel. But multi-threading can be used
if available, for example via the xil kernel.

Each iteration of the main loop involves the following
steps. First, the input-event queue as filled by the inter-
rupt handler get processed. Each processed input event
may influence the GUI model and thereby populate the
redraw-request queue. But thanks to the user-input han-
dling as described in Section 3.3, the worst-case execution
time (WCET) of input handling is negligible. In the sec-
ond step, the client’s application code is executed via reg-
istered event-callback functions. Thereby, the application
code may generate any amount of requests to update its
GUI model. Because these updates are nonblocking and
fast operations, however, the WCET of the client code does
not depend on the redraw performance of the GUI server
and can be estimated individually. The third step performs
the expensive transformation of the GUI model to pixels.
But thanks to our redraw-queueing technique, we have fine
control over the WCET to spend for each iteration. For
example, if we have a pixel throughput of 1 million pix-
els/second, we can limit the redraw processing to 10,000
pixels per iteration and thereby keep the WCET of the re-
draw processing below 10 ms. Thereby, the responsive-
ness to user input can be deduced from the sum of both
the WCET of the application callbacks and the predefined
WCET of the redraw processing.

4.5 Advanced features

In addition to the previously described redraw schedul-
ing, DOpE’s widget-based GUI model enables the imple-
mentation of advanced features such as partially translu-
cent windows, drop shadows, and arbitrarily-sized windows
while providing a worse but still bounded worst-case redraw
processing time.

A straight implementation of such features would em-
ploy the painter’s algorithm by drawing windows from back
to front and properly incorporating each window’s translu-
cency values for painting pixels (alpha blending). There-
fore, the processing time for such a redraw operation would
correlate with the number of overlapping windows and is
unbounded. DOpE’s redraw engine functions differently
by prepending the actual redraw operation with a geometric
visibility analysis. For each pixel on screen, DOpE can de-
termine the front-most window that contributes to its color
value. Based on this information, it subdivides each redraw
request into a set of fully exposed window areas and propa-
gates a redraw request to each of these windows. The win-
dow, in turn, decides if the background of the window con-

Figure 4: Depth-limited translucency and drop shadows.

tributes to the window’s pixel (alpha value is smaller than
1.0). If so, the window first issues a redraw operation for
its used screen area to the windows that are visible through
it as part of the window’s background and then paints its
foreground. Consequently, the redraw engine always paints
from front to back and lets the actual widget for each layer
decide to process another background layer (if the widget is
at least partially translucent) or not (if the widget is opaque)
before applying its foreground colors. As a consequence of
this strategy, the costs of processing a redraw request com-
prising a number of translucent layers depends on the pol-
icy of each incorporated widget but it can also be bounded
by limiting the recursion-depth of the background redraw
processing. Imposing such a limit results in depth-limited
translucency and bounded redrawing costs. Figure 4 dis-
plays the result of the depth-limited translucency algorithm
for a limit of two translucent layers.

4.6 Evaluation

As presented in Section 4.3, the use of software ren-
dering with the data path to the frame buffer as the most
significant performance constraint suggests a proportional
relationship between the number of pixels to redraw and
the redraw-execution time. To validate this claim, we con-
ducted two experiments.

For both experiments, we use the Genode FX hardware
described in Section 2 instantiated on the Xilinx Spartan3A
Starter Kit. It requires 7,512 of 11,776 (63%) look-up-
tables and 6,183 of 11,776 (52%) flip-flops available in the
Spartan3A-700. The DDR2-SDRAM is connected to the
MPMC using 16-bit data width and a clock of 100 MHz.
The CPU core and the processor-local bus are clocked at 50
MHz. The display controller uses a pixel clock of 50 MHz.
We have configured the MicroBlaze CPU with 4KB data
and instruction caches. With enabled display, the memory
throughput gained with a simple for loop operating on 32-
bit values is 16.21 MB/sec for reading, 23.68 MB/sec for
writing, and 13.24 MB/sec for copying.

The first experiment analyses how the pixel throughput
is influenced by local GUI features. For each screen po-

8



x

y

costs per 16x16 redraw

(0,0)

(783,0)

(0, 583)

Figure 5: Influence of local GUI features on the pixel throughput.
Each value is the average of four consecutive measure-
ments. (800x600, redraw-operation size of 16x16 pix-
els, drop shadows disabled)

width

he
igh

t

costs per pixel

(0,0)

(400,0)

(0,300)

Figure 6: The pixel throughput as a function of the width and
height of redraw operations. The data corresponds to
the top-left quarter of the screen as depicted in Figure
3. Values for requests smaller than 8x8 pixels are not
shown.

sition of the scenario displayed in Figure 3, we measured
the time needed to perform a redraw operation of the sur-
rounding 16x16 pixels. Ideally, we would observe the same
costs for each screen position. In Figure 5, we can observe
two effects. First, the costs for executing graphical primi-
tives within windows is almost constant, regardless of the
window’s content. For example, the region at the left cor-
ner corresponds to the LED control panel whereas most of
the other windows display a scaled image. The second ob-
servation is the overhead for the geometric analysis and for
clipping. On window boundaries, multiple windows must
be revisited, which increases the costs. In practice however,
most redraw requests span regions than contain both hot
spots (window corners) and cheap areas (window content)
such that the overhead of the geometric analysis remains
moderate. Still, we could construct pathological window
configurations that will break our overly simple cost model.

The second experiment addresses the claim that the pixel
throughput is invariant to the redraw-request size. For
each position (x,y) of the top-left quarter of the GUI sce-

nario, we performed a redraw operation of the rectangu-
lar area between the top-left screen corner and respective
position (x,y) and measured the execution time divided by
the redraw-request size x*y. The important observation of
this benchmark is the nonuniform pixel throughput for very
thin redraw operations as displayed in Figure 6. For such
requests, the overhead for traversing the widget represen-
tation clearly dominates the costs. The second interesting
observation are the clearly visible cache effects for redraw
operations with a height smaller than 14 pixels. Although
these anomalies hint at possible refinements of the temporal
model, in practice, the simple model turned out to be effec-
tive for taking scheduling decisions. Thanks to our redraw
merging technique, the corner cases of thin redraw opera-
tions occur mostly combined with bigger redraw jobs and
do not dominate the overall performance.

On our hardware platform, we observe an average pixel
throughput of 1.4 million pixels per second. Because the
upper limit of pending pixels to redraw is limited by the size
of the screen, the maximum latency of serving any GUI re-
quest is the time needed to update the whole screen. For
a 800x600 screen, we achieve a worst-case latency of 344
msec (480,000 pixels / 1.4 million pixels per second). For
a 640x480 screen, the worst-case latency is 220 msec. With
the known pixel throughput, we can further choose an ap-
propriate pixel-limit parameter for the redraw processing.
To achive a responsiveness to user input of 20 msec, we
limit the redraw processing to produce no more than 28,000
pixels per iteration (20 msec * pixel throughput). The pixel-
limit parameter can either be hard wired or obtained by
measuring the pixel throughput at runtime.

5 Related Work

There exists surprisingly sparse work by the real-time
community taking the special characteristics of graphics op-
erations on GUIs into account. We consider Artifact [9]
as the most significant contribution in this domain. Ar-
tifact is a real-time window system built in 1995 on RT
Mach. It differentiates between real-time clients and non-
real-time clients. Real-time clients can only use graphi-
cal operations with known execution times and must pro-
vide a client model for the use of these primitives. In the
GUI server, real-time and non-real-time requests are pro-
cessed by independent threads, which concurrently access
the frame buffer and are executed at different priorities. Ar-
tifact has no server-side knowledge about client representa-
tions but immediately reacts upon graphical commands sup-
plied through client-interface invocations. Consequently,
the Artifact GUI server cannot perform redraw-dropping
techniques. In contrast to Artifact, our approach does not
require temporal models of client behaviour because it per-
forms the transformation from client representations to pix-

9



els locally.
The traditional approach to achieve fluent media play-

back on general-purpose PC hardware is the use of hard-
ware overlays that effectively remove the GUI server from
the latency-critical data path between the application and
the hardware. A generalization of this technique that moves
the composition of the screen from multiple independent
pixel buffers into the hardware is described in [3]. The pro-
posed hardware introduces a programmable per-pixel indi-
rection for pixel-read operations performed by the output
unit of the graphics device. For each pixel to be displayed in
screen, a Frame-Selection-Vector table, exclusively accessi-
ble by the GUI server, contains an offset value to be added to
the current pixel address when outputting the corresponding
pixel. With such a hardware in place, the scheduling policy
of the underlying operating system would be directly ap-
plicable to graphics. To our knowledge however, this tech-
nique was never implemented.

In 1995, another approach for creating custom display
hardware with QoS support was conducted in the context
of the Nemesis project. Nemesis [6] is an OS architecture
specialized for distributed multimedia applications. The
DAN Framestore [8] is a frame-buffer device that is capa-
ble of arbitrating the access to the physical frame buffer for
up to 256 ATM-based stream connections with individual
QoS properties. To spatially isolate the different clients on
screen, the DAN Framestore performs key-based clipping
protection. For each pixel, the device maintains an addi-
tional tag value. In contrast to the frame buffer, the tag
buffer is only writable by a privileged software component.
Each client stream has a unique stream ID. When a client
stream issues a write operation to a particular pixel, the
DAN Framestore performs the pixel-write operation only
if the client ID equals the tag value of the targeted pixel.

Both frame-selector vectors and tagged pixels share the
idea of storing the arbitration policy per pixel and thereby
ease the multiplexing of different clients based on their
pixel-based representation. In contrast, our work takes the
transformation of the client’s GUI elements (widgets) to
pixels into account.

6 Conclusion

This paper presented a custom hardware and software to
realize windowed GUIs on low-cost FPGAs. Thereby, we
payed special attention to the constraints of such platforms,
in particular the memory bandwidth, processing time, and
the simplicity of the hardware. Our key contribution is the
decoupling of the application code from the redraw process-
ing. The application code operates on a high-level model of
the GUI whereas the redraw process translates this model
to pixels in a well-controlled manner and can thereby apply
optimizations and scheduling. This design clears the way

for both bounded output latency and guaranteed responsive-
ness to user input.

Both our hardware designs and our GUI software stack
are freely available as open source [1] and can be deployed
on a wide range of FPGA platforms including Spartan3,
Virtex4, and Virtex5. For example, Genode FX is used
on the Virtex5-based rapid prototyping platform described
in [2]. There are many future challenges we want to pur-
sue. We expect a significant performance gain from micro-
optimizing the low-level pixel operations. Furthermore,
we consider implementing hot-spot functions into our SoC
hardware.

References

[1] Genode FX website. URL:
http://fpga-graphics.org.

[2] M. Alles, T. Lehnigk-Emden, C. Brehm, and N. Wehn.
A Rapid Prototyping Environment for ASIP Validation
in Wireless Systems. In Accepted for publication, eda-
Workshop09, Dresden, Germany, May 2009.

[3] J. Epstein. A High-Performance Hardware-Based High
Assurance Trusted Windowing System. In Proceedings
of the 19th National Information Systems Security Con-
ference, Oct. 1996.

[4] N. Feske and H. Härtig. Demonstration of DOpE — a
Window Server for Real-Time and Embedded Systems.
In 24th IEEE Real-Time Systems Symposium (RTSS),
pages 74–77, Cancun, Mexico, Dec. 2003.

[5] N. Feske and H. Härtig. DOpE — a Window Server for
Real-Time and Embedded Systems. Technical Report
TUD-FI03-10-September-2003, TU Dresden, 2003.

[6] D. M. Ian Leslie, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design
and Implementation of an Operating System to Support
Distributed Multimedia Applications. IEEE Journal on
Selected Areas in Communications, 14(7), Sept. 1996.

[7] Norman Feske and Christian Helmuth. A Nitpicker’s
guide to a minimal-complexity secure GUI. In Proceed-
ings of the 21st Annual Computer Security Applications
Conference (ACSAC), 2005.

[8] I. Pratt. User-Safe Devices for True End-to-End QoS.
Proceedings of the 7th International Workshop on Net-
work and Operating Systems Support for Digital Audio
and Video (NOSSDAV 97), 1997.

[9] J. E. Sasinowski and J. K. Strosnider. ARTIFACT: A
platform for evaluating real-time window system de-
signs. In IEEE Real-Time Systems Symposium, pages
342–352, 1995.

10


	1 Introduction
	2 A system on chip for handling interactive graphics
	3 Designing the GUI as resource scheduler
	3.1 Making worst-case execution times of redrawing jobs predictable
	3.2 Local scheduling of redrawing jobs
	3.2.1 Constraining priority inversion through artificial preemption points
	3.2.2 Redraw queueing

	3.3 Dealing with user interaction

	4 GUI software stack
	4.1 Widgets as server-side client representation
	4.2 Application programming interface
	4.3 Resource scheduling
	4.4 Control flow between GUI client and GUI server
	4.5 Advanced features
	4.6 Evaluation

	5 Related Work
	6 Conclusion

