
DOpE — a Window Server for
Real-Time and Embedded Systems

Norman Feske and Hermann H ärtig

Institute for System Architecture, Operating
Systems Group

TUD–FI03–10–September 2003

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakult ät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

DOpE — a Window Server for Real-Time and Embedded
Systems

Norman Feske
Hermann Ḧartig

Dresden University of Technology
Department of Computer Science

{nf2,haertig}@os.inf.tu-dresden.de

Abstract

A window server used in real-time applications should be
able to assure previously agreed-upon redrawing rates for
a subset of windows while providing best-effort services
to the remaining windows and operations such as moving
windows. A window server used in embedded systems
should be small and require only minimal operating sys-
tem support, for example just threads and address spaces
as provided by micro-kernels.

In this paper, we present the design and an implementa-
tion of the DOpE window server that has these properties.
The key techniques used are to move redrawing respon-
sibility from client applications to the window server and
to devise a simple scheduling discipline for the redrawing
subtasks.

1 Introduction

Applications that need graphical representations can
roughly be characterized as belonging to one of two do-
mains:

• Interactive applications basically execute a loop
where the application waits for user input, changes
its internal state, and updates its graphical representa-
tion accordingly. Typical representatives of this class
are word processors, spreadsheet programs, web-
browsers, editors, and other dialog-based applica-
tions. The time requirements of these applications are
imposed by the user’s ability to supply input events
fast enough. Thus, they spend most of the time idling.
The only requirement with respect to user responsive-
ness is that the delay between the state change and up-
date of the representation is less than approximately
100 ms.

• Multimedia applications are driven not by user input
events but by time. The output of such applications,
for example video frames, must be available on the
user interface in a periodic manner. Even small de-
lays are perceivable for the user and compromise the
quality of service that is expected by the user.

We refer to multimedia applications as real-time (RT) and
to other applications as non-real-time (NRT) load.

L4/Fiasco Microkernel

DOpE
window
server

non-real-time
L4Linux

X-Window
System

real-time
application

Figure 1: Real-time and non-real-time applications run-
ning in one environment

The task of a window server is to multiplex graphical
representations of concurrently running client applications
onto the screen, which is one single physical resource. The
objective is to guarantee the quality of service of real-time
client applications even in overload situations. Such over-
load situations can be induced by massive output of non-
real-time applications or by the user who interactively re-
arranges windows. Window servers that are used in sce-
narios as described above often exhibit undesirable be-
haviour. Unawareness of real-time versus non-real-time
requirements leads to uniform performance degradation
in overload situations, even if there are enough resources
available to serve the real-time client applications properly.

If window servers are used in embedded systems with
limited resources, they should be small and they should not
rely on large operating systems. Even if — for the sake of
the argument — we accept that embedded systems need-
ing window server functionality just have to have enough
resources for (scaled down) versions of standard operating
systems and window servers, reliability and trustworthi-
ness considerations still uphold the requirement for small-
sized and self-contained window servers.

The key argument is that currently available operating
systems are much too large to be evaluated thoroughly
enough to rely on them for critical applications. This ar-
gument is especially important for hybrid systems where
applications with high real-time or reliability requirements
coexist with less critical applications of legacy operating
systems on one system.

DROPS[4], the Dresden Real-Time Operating System
for which DOpE (Desktop Operating Environment) is
made for, is designed to meet that diversified requirement.
DROPS is based on the L4/Fiasco [9, 7] microkernel and
supports the concurrent operation of real-time applications
with L4Linux, a user-level implementation of the Linux
kernel[2]. L4Linux and each real-time application run in
their own separated address space (Figure 1). Faults oc-
curing in the real-time applications (for example during
debugging) do not harm L4Linux, and — much more im-
portantly — L4Linux crashes do not harm matured high-
reliability applications after deployment of an embedded
system. Detailed evaluations and comparisons with more
integrated systems have revealed that the execution and
response-time costs of that separation are within small
margins acceptable for most applications[2, 10]. To enable
sharing of resources other than just CPU and memory, re-
source managers[5] are being built for other, higher-level
resources such as disk and network bandwidth.

DOpE, the window server presented in this paper, is
such a resource manager that provides window-redrawing
bandwidth. In a general DROPS setting, DOpE supports
real-time clients besides L4Linux and XFree86 as non-real-
time clients. Since several months, the authors give most
of their presentations using DOpE and a simple, non-real-
time presentation program running besides L4Linux. The
following numbers are given to provide the reader with an
idea about the sizes involved: A presentation using DOpE
relies on ca 30.000 lines of code (including all supporting
software such as L4/Fiasco [9, 7]) in comparison to mil-
lions lines of code in other systems that are often used for
presentation.

A small window server is of interest in another scenario
as well. If applications such as a bank transaction need
legacy operating system support, for example for providing
network connectivity, and highly trustworthy components,
for example for secure storage of keys, then the window
server will be part of the trusted computing base of such a
system. DOpE is small enough to have the potential for a
thorough evaluation.

In this paper, we present the overall architecture (Sec-
tion 2) of DOpE and then concentrate on the real-time
operation. We then give some details about the imple-
mentation (Section 3) and compare DOpE wih Artifact [8]
(Section 5), the only other real-time window server about
which we have non-trivial architectural information.

Client
application

Window
server

rectangle
list

Frame-buffer

send graphical primitive
commands draw

primitive

Figure 2: A client application sends graphical primitives to
the window server

2 Architecture

2.1 Client-server architecture

A graphical user interface consists of one window server
and a set of client applications, which can connect to the
window server. The window server stores the information
about which screen region belongs to which client applica-
tion, handles user events, and coordinates redrawing oper-
ations.

The window server must enforce the separation of multi-
ple client applications and assure the identity of the client
application in the active window. Thus, in environments
requiring additional trustworthiness the window server be-
longs to the trusted computing base.

We make no assumptions about the trustworthiness of
a client application. A malicious client application must
neither impact concurrently running client applications nor
acquire or counterfeir information about other client appli-
cations.

2.1.1 Classical approach

Classical window servers, for example the X-Window Sys-
tem, implement a set of graphical primitives and provide
an interface used by client applications to send graphical
primitive commands.

Figure 2 shows a client application sending graphical
primitive commands to the server. The server, in turn, in-
terprets the commands and draws to the physical frame
buffer accordingly. Since the window server has the infor-
mation about the window configuration, it can apply clip-
ping to the drawing functions in the correct way. Thus,
the integrity of the user interface can be protected by the
window server.

During the execution of redraw operations, for example
when the user moves a window, the server needs the active
help of its client applications. Only the client application
stores the information about its representation on screen.
Thus, the client application must provide a description of
its representation in the form of graphical primitives to the
server for each redraw operation. This is illustrated in Fig-
ure 3.

Figure 4 illustrates an exemplary scenario: When the in-
teractive user moves a window, parts of its underlying win-
dows get visible. The window server notifies all affected
client applications to trigger a redraw. In return, each of
these client applications send a description of their repre-

Client
application

Window
server

rectangle
list

Frame-buffer

send graphical primitive
commands draw

primitive

trigger redraw interactive

user event

Figure 3: An interactive user event triggers a redraw re-
quest

send drawing command

send drawing command

send drawing command

send drawing command

Interactive
User

moves a
window

Client
application

express representation of
displayed information using

graphical primitives

Window
server

observes that screen area
(x,y,w,h) must be updated

draw graphical primitive

draw graphical primitive

draw graphical primitive

draw graphical primitive

request drawing
of area (x,y,w,h)

Figure 4: Exemplary scenario: user moves a window

sentation in the form of graphical primitives to the window
server who performs the actual drawing operation.

2.1.2 DOpE’s approach

DOpE’s client-server architecture differs to the classical
approach in two ways:

• A client application and the window server share a
compact description of the client application’s graph-
ical representation in a language with a semantic
known to the window server. Thus, the window server
can redraw the graphical representation of any client
application without the active cooperation of the af-
fected client application.

• Client applications trigger redraw requests at the
server instead of supplying graphical primitives di-
rectly.

Figure 5 illustrates this architecture. In comparison to the
classical approach (see Section 2.1.1), our approach leads

Client
application

Window
server

rectangle
list

Frame-buffer

draw

trigger redraw interactive

user event

Shared representation
of client application

feed read interpret
1

2

3

4

Figure 5: The client application and the window server
share a compact description of the client’s representation

RT Client
application

rectangle
list

Frame-buffer

NRT Client
application

trigger NRT redraw

Window
server

periodic
activity

?admit (size, frame rate)

Interactive user

triggers redraw

synchronisation
message

Figure 6: Example scenario showing real-time-admission,
synchronization feedback and the triggering of non-real-
time redraw requests

to a different mode of operation: A client application up-
dates the shared representation and then triggers a corre-
sponding redraw operation in the window server.

With regard to real-time, our design allows local
scheduling of redraw operations within the window server.
The redraw operations are designed such that their execu-
tion time is known in advance.

2.1.3 Redraw for real-time client applications

For the output of real-time client applications we introduce
a periodic activity in the window server that triggers re-
draw operations in a defined (and predictable) way. We
discuss in Section 2.2 how we use this periodic activity in
the window server.

To establish a periodical real-time output, a client appli-
cation has to request an admission at the server by speci-
fying the size and update frequency of the desired output
area (widget) on screen. Figure 6 shows an exemplary ad-
mission scenario.

After a successful admission, the server refreshes the
negotiated widget periodically, based on the known rep-
resentation of the client application’s data, and optionally
informs the client about a completed redraw using syn-
chronization messages. It is up to the real-time client ap-
plication to timely feed its current state to the graphical
representation which, in turn, is shared with the window
server.

2.2 Real-time redraw engine

As a result of the design presented in Section 2.1 we have
the following situation on the server side:

• Non-real-time redraw requests of any complexity can
be requested at any time.

• There is a fixed set of real-time redraws to be executed
periodically.

• The server can execute redraw operations without the
active help of its client applications. Thus, redraw op-
erations can be scheduled based on known execution
times.

Interactive
user

NRT client
application

RT client
application

put

sleep execute
redraw

queues not
empty

queues empty

woke up

?
choose

triggerredraw tri
gg

er
re

dr
aw

redraw activity

window
server

nrt redraw queue rt redraw queue

periodic activity
triggers rt-redraws

ad
m

it

?
choose

put

wake
up

wake
up

Figure 7: Illustration of redraw queues

• We regard redraw requests triggered by the interactive
user as non-real-time redraw requests.

Additionally, we consider the following constraints:

• Redraw operations may be time intensive — for ex-
ample when pixel data must be sent over the system
bus to the graphics subsystem.

• Once started, a redraw must be completed before a
new redraw operation can start. However, redraw op-
erations can be split into smaller ones before execu-
tion.

• The physical screen is an exclusive resource. Only
one activity (thread) can manipulate the screen at a
time.

The latter two constrains are necessary to enable the (fu-
ture) usage of hardware-accelerated graphics cards that can
carry out only one graphics operation using one current
clipping area at a time.

In this section we will present different strategies for se-
rializing redraw operations leading to a design that obeys
the following contraints:

• Real-time widgets are periodically updated at defined
update rates.

• The graphical appearance and the stored representa-
tion of non-real-time client applications is consistent
and current.

• The window server is immune to denial of service at-
tacks and guarantees accessibility.

The simplest way to process redraw requests is shown in
Figure 7. All incoming redraw requests are stored in either
a real-time redraw queue or a non-real-time redraw queue.

There is one redraw activitiy in the server that processes
all queued redraw requests. In Artifact [8] this approach is
called kernelized monitor.

NRT

t0

trt

tmax

execution of
non-realtime drawing
operations

execution of
realtime drawing
operations

time slot
duration

t

RT

Figure 8: Usage of a time slot for real-time and non-real-
time redraw operations

The redraw activity of the window server always pro-
cesses the real-time redraw operations first, followed by
the redraw requests stored in the non-real-time queue.

To prevent overload situations caused by real-time re-
draw requests, the window server applies admission tests.

However, overload situations caused by non-real-time
client applications can lead to unbounded latency of non-
real-time redraw operations. We solve this problem with
the following technique: Each redraw request refers to one
specific window. If a redraw requests comes in for a win-
dow for which an entry in the redraw queue already exists,
both redraw requests are merged and stay at the queue po-
sition of the old request. Thus, the maximum size of the
queue equals the number of windows on screen. The sum
of the queued pixels to redraw is limited to the number of
pixels on screen because all queue entries refer to disjoint
screen areas. For a given window configuration, the max-
imum latency for displaying any kind of information on
a screen equals the time that is needed to update the en-
tire screen. This maximum latency defines the guaranteed
timeliness of non-real-time client applications.

For determining the chronological order of processing
the queued real-time redraw requests an assignment of pri-
orities to real-time redraw requests was proposed in Ar-
tifact [8]. The drawback of this method is a priority in-
version problem: A currently processing long-taking non-
real-time redraw operation or a real-time operation with a
lower priority can delay a high-priority real-time redraw
operation.

To avoid this problem, we use a time-driven approach
for processing real-time redraw operations, which nicely
fits with the relatively static periodicity of real-time
graphical-user-interface (GUI) client applications. The pe-
riodic redraw activity is subdivided in a fixed number of
time slots. Each time slot can hold one or more real-time
redraw requests. If time is left after the execution of real-
time redraw operations it is used to execute requests from
the non-real-time redraw queue (Figure 8). Thus, the com-
pletion of real-time redraw operations is guaranteed.

When a real-time client application requests a periodic
redraw, the window server assigns time slots and allocates
the time that is needed for this periodic redraw.

We have chosen a time slot periodicity of 150 Hz to en-
able redraw rates of 50 Hz, 30 Hz (NTSC), 25 Hz (PAL)

t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
time slot

tmax

a)

t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
time slot

tmax

b)

worst case

1

1

40ms 80ms 120ms

redraw execution times of real-time widgets

time for non-real-time redraw operations

Figure 9: Two opposing real-time redraw strategies

and so on (any whole numbered fraction of 150 Hz). These
update rates are typical for common multimedia applica-
tions. Thus, this degree of flexibility is sufficient for the
applications we are aiming at.

There are two immediate consequences of this ap-
proach:

• The window server must assign real-time redraw op-
erations to time slots at the admission of new real-
time client applications.

• To make efficient use of each time slot the space
left in time slots must be padded with non-real-time
redraw operations. Since redraw operations cannot
be preempted, non-real-time redraw operations must
be split into smaller ones before starting the execu-
tion. We use a runtime-measurement-based heuristic
function to estimate the number of pixels that can be
drawn in a given time and then split redraw operations
into smaller ones that fit in the space left in the time
slots.

Two opposing strategies for assigning real-time redraws to
time slots and implementing admission tests are illustrated
in Figure 9. The figure shows the real-time load per time
slot in an exemplary situation with four real-time widgets
(marked by different colors). The opposing strategies are:

a) The real-time client application can individually
chose any whole-numbered fraction of 150 Hz as the up-
date frequency for each real-time widget. The window
server accepts new real-time widgets as long as the sum
of all real-time redraw execution times is lower than the
time slot duration. Even in the worst case — when all re-
draws must be executed at one time slot — the sum of all
redraws is still lower than the time slot’s duration. One
drawback for practical use is that the decision about new
widgets acts upon a hypothetical worst case. Thus, the ad-
mission criterion to decide about new real-time widgets is
far too pessimistic.

Figure 10: Screenshot of DOpE running two real-time
client applications and L4Linux

b) In contrast to the previous strategy the real-time client
application can only use one update frequency for real-
time widgets. In this case, the window server can exe-
cute real-time redraw operations strictly interleaved. The
window server accepts new real-time widgets as long as
there is a time slot which can hold the new real-time re-
draw operation without exceeding the time slot’s duration.
As indicated in Figure 9(b) this strategy is capable of han-
dling more real-time widgets than the first strategy without
exceeding the time slot’s duration. The drawback of this
solution is the lack of flexibility of update frequencies.

3 Implementation

We implemented the conceptual ideas discussed in Section
2 in the window server DOpE (Figure 10).

The DOpE window server runs on the top of the
L4/Fiasco [9, 7] microkernel which provides the following
functionality:

• Activities (threads)

• Address spaces

• Inter-address-space communication and shared mem-
ory [10]

3.1 DOpE server structure

Figure 11 illustrates the structure of the DOpE window
server. Currently, we use software rendering routines
(Graphics layer) to access a VESA frame buffer. It man-
ages clipping and contains functions for drawing graphical
primitives such as scaled images and text.

The mouse and keyboard drivers are ported from Linux
to the L4/Fiasco [9, 7] platform. On top of the input device
drivers there is an input abstraction layer with support for
different keymaps. DOpE handles user input events in a
non-blocking way. Thus, the interactive user does not im-
pact the continuous output of real-time client applications

Mouse
driver

Keyboard
driverFrame buffer

Graphics layer Input device abstraction layer

Command
Interface

Event
delivery

Static
Widget

Static
Widget

Protocol
Widget Widget layer

cu
sto

m protoco
l

DOpE
window
server

event
listener

DOpE
client

applicationIPC IPC

Figure 11: Schematic overview of the DOpE window
server

when interacting with the window server — for example
by moving a window.

The representation of client applications on the DOpE
window server is based on widgets and their relationship
to each other (topology). A widget defines the graphical
representation and the response to user interactivity of a
dedicated type of data or protocol. As illustrated in Figure
11, protocol widgets can establish a dedicated communi-
cation channel to the client application, for example via
shared memory. This way the representation of a client
application can be shared with the window server asyn-
chronously.

The widget layer is built on top of the Graphics and In-
put abstraction layers and contains the implementation of
the following widget types:

• Window, Button, Scrollbar, and Frame as the basic
primitives of the window server

• Grid allowing the arrangement of multiple child wid-
gets to be aligned in a rectangular grid

• Container allowing the placement of multiple child
widgets via pixel coordinates

• Terminal for textual output with support for a subset
of VT100 escape sequences

Additionally, we implemented two protocol widgets with
separate communication interfaces to their associated
client application:

• pSLIM: pSLIM is a derivate of the SLIM [11] proto-
col. The client application can send graphical prim-
itives, for example filled rectangles or pixmaps, to a
pSLIM widget which acts as a virtual canvas. It sup-
ports the display of RGB and YUV color space coded
data and also provides support for text output.

• VScreen implements a shared-memory buffer with a
pixel-based representation of client data between the
client application and the window server. It can be
used as a periodically updated real-time widget in a

way that is described in Section 2.1.3. The client ap-
plication and the interactive user can vary the size of
each VScreen widget resulting in a scaled output of
the represented pixel data.

Similar to the approach of Tcl/Tk [12], user interface wid-
gets are created and configured by using a text-command-
based communication interface to the client application.

Input events are primarily handled by the affected wid-
gets. In turn, widgets can forward events to the client ap-
plication via the event delivery component (see Figure 11).

3.2 L4Linux, XFree86 and other non-
real-time client applications

L4Linux [2] is a user level implementation of the Linux
kernel on top of the L4/Fiasco [9, 7] microkernel.

We implemented a driver module for the XFree86 [13]
X-Window System which forwards the graphical output of
the X-Window System to a DOpE widget (pSLIM). Thus,
we are able to run the broad range of non-real-time X11
applications together with native real-time applications in
one environment.

With Presenter, we implemented a simple presentation
program that displays slides as BMP images and let the
interactive user chose the currently visible slide.

3.3 Real-time clients

We implemented two real-time client applications that
make use of the VScreen widget type to display a continu-
ous stream of pixel data:

• VScrTest is a demonstration program that calculates
four different graphical effects: a 3D particle effect,
a bumpmapping effect, a voxel landscape and a feed-
back effect. The effects are rendered into a shared
memory buffer which, in turn, is displayed by the
DOpE window server at a constant frame rate of 25
frames per second.

• USB WebCam is a client of a Linux USB-stack which
was ported to the user level of L4/Fiasco [9, 7]. It
constantly displays the image which is sampled from
a USB-webcam at a frame rate of 25 frames per sec-
ond.

Both client applications make use of the real-time fea-
tures of DOpE. Thus, the rearrangement of windows and
the graphical output of concurrently running client appli-
cations have no impact on the constant update rate of the
real-time clients.

4 Evaluation

4.1 Performance

To put the overhead of the windowing system in perspec-
tive, we estimated the needed bandwidth for drawing a
scaled image as an instantly used graphics operation (for

action MByte/s µs/16-bit

main memory read

main memory write

screen memory read

screen memory write

copy main memory
to screen

176.53

166.55

6.12

31.11

28.48

0.0108

0.0114

0.3116

0.0614

0.0670

measured on an AMD Duron 700Mhz PC equipped with a Matrox G450 graphics card

Figure 12: Practical memory access measurements

example the output of a button’s background or pSLIM-
widget) in DOpE and compared the estimated bandwith
with a real-life measurement. Figure 12 shows a table of
the measured memory bandwidths on our AMD Duron test
computer (700Mhz, 128MByte RAM, AMD chipset).

All transfers were done 16-bit wise because a 16-bit
value is equivalent to a pixel with 16-bit color depth — as
used by DOpE. The low transfer bandwidth to the graph-
ics card is distinctive when compared to the access speed
to the main memory. Because of this, operations on screen
memory must be limited to a minimum. Thus, DOpE uses
an offscreen rendering technique (double buffering). A vir-
tual screen buffer is kept in main memory. All graphical
operations are quickly applied to the virtual screen. When
the graphical operations are finished, the affected area is
copied from the virtual screen buffer to the screen mem-
ory. Thus, the bottleneck to the screen memory must be
passed only once per pixel.

For drawing a scaled image, the interesting values are
“main memory read” (for reading a source image), “main
memory write”’ (for writing to the virtual screen) and
“copy main memory to screen” (for transfering the pixels
from the virtual screen buffer to the screen memory).

The needed times for the involved memory transfer op-
erations are (see Figure 12):

• reading a 16bit offset from a scale table:0.0108µs

• reading a 16bit pixel from source image:0.0108µs

• writing a 16bit pixel to virtual screen:0.0114µs

• copying a pixel from the virtual screen buffer to the
physical screen memory:0.067µs

The sum of these values is0.1µs. This, theoretically
1/0.1 = 10 pixels can be drawn during1µs. The mem-
ory accesses for loading the CPU instructions are not taken
into account because they are kept in the processor’s cache.

For the real-life measurement, the Redraw Manager of
DOpE was enhanced by statistical computations. DOpE
determines the number of drawn pixels per redraw opera-
tion and measures the corresponding processing time. It

keeps track of two values: “average pixel/usec ratio” and
“minimum pixel/usec ratio”. The “average pixel/usec ra-
tio” is computated using a sliding mean algorithm with a
constant learning rate of 0.05. The results of the real-life
measurements after working with DOpE for a while were 8
pixels/µs average ratio and 4pixels/µs minimum ratio.
Thus, the average ratio reaches nearly the estimated value
of 10 pixels. This is a strong indication for the efficient
implementation of the graphical output routines and the
low overhead caused by the window server. The minimum
ratio occurs when multi-layered widgets such as stacked
layout-widgets must be drawn.

4.2 Source-code complexity

In Section 2.1 we claimed that the window server belongs
to the trusted computing base. Thus, it is important to keep
the source-code complexity of the window server low.

Altogether, the current implementation of DOpE con-
sists of about 10,000 lines of code. This code includes:

• Widgets: Window, Scrollbar, Frame, Grid, Container,
Button, Terminal, VScreen, pSLIM

• Support for proportional bitmap fonts

• A keymap component to support different keyboard
layouts

• All graphical rendering routines

• A command-interpreter-based client-server commu-
nication protocol

• Abstractions for shared memory, screen, threads,
timers, input devices

Internally, DOpE is structured in a component-based way,
which allows a high degree of customization for special
applications. By leaving out higher-level widgets such as
Grid-layout, DOpE can be scaled down to a minimalistic
but fully working window server with about 7,000 lines of
code. In secure system architectures as described in [6] the
graphical user interface is part of the trusted computing
base. DOpE’s extremly low source-code complexity en-
ables an exhausting verification of the window server and
makes it viable for secure platforms.

The size of the executable binary of DOpE including
input device drivers, graphics routines, graphical data (four
bitmap fonts), and all widget types described in Section 3.1
is 250KByte. The core functionality (without input drivers
and the L4 Environment) of DOpE enfolds a binary size of
150Kbyte.

5 Related work

The discussion of Artifact [8] in relation to DOpE nicely
allows to explain some principle approaches of DROPS in
general [5, 1]. DROPS provides resource managers that
map underlying, basic resources to higher-level ones. For
example, DOpE maps CPU cycles and main memory to rr-
edraw bandwidth.Thus, when a new real-time-window is

requested, DOpE checks whether or not the acquired basic
resources suffice. This probably leads to less flexibility,
but to lower overall admission and scheduling complexity.

New types of resources, such as window-drawing band-
width, are scheduled and admitted as such locally within
the resource manager. Basic resources on the other hand
are scheduled and admitted for the resource managers.

Artifact [8] works principally different. It dynamically
creates client and server real-time models and then makes
global admission decisions (so we understand the princi-
ples described in Artifact [8]). In quite some details, there
are similar implementation structures: Artifact [8] has (in
their first version) a single redraw-execution activity and
refers to that version as a kernelized approach. They run it
at the highest priority. In later versions they use multiple
threads for multiple real-time client applications and derive
priorities from real-time client application priorities.

DOpE is based on a localized, simple, essentially time-
driven scheduling approach because it gives us a clear
perspective to include DROPS’ quality assuring schedul-
ing [3] with its mandatory and optional parts of real-time
applications as a relatively simple local scheduling disci-
pline. DROPS uses a similar approach for other resources
such as disk bandwidth: a disk-bandwidth manager re-
quests its CPU resources as a resource manager as a whole
and uses them to perform local disk-request scheduling,
a daunting task for a global scheme to schedule basic re-
sources.

6 Conclusion

With DOpE we have a window server which is capable
of guaranteeing quality of service for multimedia applica-
tions with continuous output while efficiently utilizing the
remaining CPU resources to serve non-real-time client ap-
plications. It is a foundation for covering those application
fields, where graphical user interfaces in combination with
real-time demands are needed.

The implementation of DOpE entails a very small mem-
ory footprint and a low computational overhead. Its
component-based internal structure allows a high degree
of customization and thus makes it viable for a broad field
of applications, ranging from desktop computers to small
portable devices.

Currently, there is work in progress to create a graphics-
acceleration driver infrastructure for DOpE to boost the
overall performance of the graphical output.

For dialog-based applications the current widget set is
not sufficient, yet. We are busy implementing standard
widget types such as radio-buttons, menus, text-edit fields
as part of the DOpE window server. Then, client appli-
cations can use the server-side widgets for common GUI
controls rather than providing own pixmap-based widget
implementations.

References

[1] Robert Baumgartl, Martin Borriss, Hermann Härtig,
Claude-Joachim Hamann, Michael Hohmuth, Lars
Reuther, Sebastian Schönberg, and Jean Wolter.
Dresden Realtime Operating System. InProceedings
of the First Workshop on System Design Automation
(SDA’98, pages 205–212, Dresden, March 1998.

[2] Martin Borriss, Michael Hohmuth, Jean Wolter, and
Hermann Ḧartig. Portierung von Linux auf denµ-
Kern L4. In Int. wiss. Kolloquium, Ilmenau, Septem-
ber 1997.

[3] C.-J. Hamann, J. L̈oser, L. Reuther, S. Schönberg,
J. Wolter, and H. Ḧartig. Quality Assuring Schedul-
ing - Deploying Stochastic Behavior to Improve Re-
source Utilization. In22nd IEEE Real-Time Systems
Symposium (RTSS), London, UK, December 2001.

[4] H. Härtig, R. Baumgartl, M. Borriss, Cl.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg,
and J. Wolter. DROPS: OS support for distributed
multimedia applications. InProceedings of the
Eighth ACM SIGOPS European Workshop, Sintra,
Portugal, September 1998.

[5] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and
T. Paul. Cooperating resource managers. InFifth
IEEE Real-Time Technology and Applications Sym-
posium (RTAS), Vancouver, Canada, June 1999.

[6] Hermann Ḧartig. Security Architectures Revisited.
In Proceedings of the Tenth ACM SIGOPS European
Workshop, Saint-Emilion, France, September 2002.

[7] Michael Hohmuth. The Fiasco kernel: System archi-
tecture. Technical Report TUD-FI02-06-Juli-2002,
TU Dresden, 2002.

[8] Jay K. Strosnider John E. Sasinowski. Artifact: An
experimental real-time window system. 1995.

[9] J. Liedtke. Onµ-kernel construction. In15th ACM
Symposium on Operating System Principles (SOSP),
pages 237–250, Copper Mountain Resort, CO, De-
cember 1995.

[10] F. Mehnert, M. Hohmuth, and H. Ḧartig. Cost and
benefit of separate address spaces in real-time oper-
ating systems. InProceedings of the 23th IEEE Real-
Time Systems Symposium (RTSS), December 2002.

[11] Brian K. Schmidt, Monica S. Lam, and J. Duane
Northcutt. The interactive performance of slim: A
stateless, thin-client architecture. In17th ACM Sym-
posium on Operating System Principles (SOSP), Ki-
awah Island, SC, December 1999.

[12] Tcl/tk, scriptics website. URL:
http://www.scriptics.com.

[13] Xfree86 website. URL:
http://www.xfree86.org.

